Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ammonium titanium fluoride reaction with

Substitution of Iron or Titanium for Aluminum in Zeolites via Reaction with the Respective Ammonium Fluoride Salts... [Pg.420]

Typically, the ammonium or hydronium form of the zeolite is slurried in water and reacted with the requisite amount of the ammonium fluoride salt of either iron or titanium. Given the sparingly soluble nature of ammonium fluotitanate, the (NH )2TiF6 can be added to the zeolite slurry in slurry form, or directly as salt. Alternatively, the iron may be added to the zeolite slurry as a slurry of the ammonium fluoride salt crystals in water, or the FeF3 crystals can be mixed with a water solution of ammonium fluoride or ammonium bifluoride, such that the composition of the treatment solution contains the stoichiometry of the ammonium iron fluoride salt, (NH4)3FeF6. The (NH )3FeF6 crystals can also be added directly to the zeolite slurry. The amount of either metal ammonium fluoride salt added during the reaction is determined by the desired product composition and the anticipated completeness of the reaction. [Pg.421]

Even better results are obtained by a post-synthesis treatment of TS-1 with both hydrogen peroxide and ammonium hydrogen fluoride, NH4HF2. Upon such a treatment (H202/F/Ti = 10 2.5 1 60 °C 4h), a substantial amount of titanium (up to 75% of the initial value) is removed. Nevertheless, the crystalline structure of the zeolite remains unchanged and the catalytic activity does not decrease. On the contrary, it actually increases since the turnover frequency of residual titanium atoms rises from 31 to 80 h . Even more importantly, at 8.6% benzene conversion the selectivities, both on benzene and on hydrogen peroxide, also increase from 83 to 94% and from 67 to 83% respectively, with formation of catechol (4%) and hydroquinone (2%) as the only by-products, without any evidence of further oxidation reactions [19]. [Pg.520]

ESTANO (Spanish) (7440-31-5) Finely divided material is combustible and forms explosive mixture with air. Contact with moisture in air forms tin dioxide. Violent reaction with strong acids, strong oxidizers, ammonium perchlorate, ammonium nitrate, bis-o-azido benzoyl peroxide, bromates, bromine, bromine pentafluoride, bromine trifluoride, bromine azide, cadmium, carbon tetrachloride, chlorine, chlorine monofluoride, chlorine nitrate, chlorine pentafluoride, chlorites, copper(II) nitrate, fluorine, hydriodic acid, dimethylarsinic acid, ni-trosyl fluoride, oxygen difluoride, perchlorates, perchloroethylene, potassium dioxide, phosphorus pentoxide, sulfur, sulfur dichloride. Reacts with alkalis, forming flammable hydrogen gas. Incompatible with arsenic compounds, azochloramide, benzene diazonium-4-sulfonate, benzyl chloride, chloric acid, cobalt chloride, copper oxide, 3,3 -dichloro-4,4 -diamin-odiphenylmethane, hexafluorobenzene, hydrazinium nitrate, glicidol, iodine heptafluoride, iodine monochloride, iodine pentafluoride, lead monoxide, mercuric oxide, nitryl fluoride, peroxyformic acid, phosphorus, phosphorus trichloride, tellurium, turpentine, sodium acetylide, sodium peroxide, titanium dioxide. Contact with acetaldehyde may cause polymerization. May form explosive compounds with hexachloroethane, pentachloroethane, picric acid, potassium iodate, potassium peroxide, 2,4,6-trinitrobenzene-1,3,5-triol. [Pg.503]

Chromates, vanadates, and cerium salts give colour reactions with the reagent and should therefore be absent. Iron salts give a yellow colour with hydrogen peroxide, but this is eliminated by the addition of concentrated phosphoric acid. Fluorides bleach the colour (stable [TiFa] ions are formed), and large amounts of nitrates, chlorides, bromides, and acetates as well as coloured ions reduce the sensitivity of the test. A decrease in the intensity of the yellow colouration upon the addition of ammonium fluoride indicates the presence of titanium. [Pg.299]

A different approach to the substitution of metal atoms into the framework is the secondary synthesis or post-synthesis method. This is particularly effective in synthesizing metallosilicates that are difficult to crystallize from the gels containing other metal atoms or hardly incorporate metal atoms by the direct synthesis method. Substitution of Ti for A1 goes back to the 1980s. The reaction of zeolites with an aqueous solution of ammonium fluoride salts ofTi or Fe under relatively mild conditions yields materials that are dealuminated and contain substantial amounts of either iron or titanium and are essentially free of defects [58]. However, no sufficient evidence for the Ti incorporation has been provided. [Pg.137]

Preferred conditions for the reaction of the zeolite with the metal ammonium fluoride are as follows. A zeolite-water slurry containing about 10-25 gm of zeolite per 100 cm3 of water is preheated to 75-95°C. When substituting Ti, the titanium salt is added to the zeolite as a water slurry containing finely divided crystals, 10 gm of (NH4>2T1F6 per 100 cm3 of water. With iron substitution, the iron salt, when added as (NH4>3FeF6, is added from a 10 wt.% solution of the salt in water. Alternatively, FeF3 can be added to a solution of NH4HF2 or NH F such that the stoichiometry of fluorine (F2) to Fe3+ is 3.0 and the total amount of salt in solution is about 10 wt.%. The addition rate of the metal ammonium fluoride salt to the zeolite slurry is about 0.005 moles of the metal ion per minute per mole of aluminum in the zeolite. [Pg.421]

For less activated aromatic systems (those without a nitro substituent), the halogcn-ex-changc reaction has been investigated with potassium fluoride in a variety of polar aprotic solvents in the presence or absence of a catalyst (see Table 13). Many different types of catalysts have been investigated these include crown ethers, quaternary ammonium salts, 3,164 pjjos-phonium salts, aminophosphonium salts, compounds containing a phosphorus and an amino function, and inorganic fluorides of boron, aluminum, tin, phosphorus, titanium and zirconium. Different forms of potassium fluoride have been used these include spray-dried potassium fluoride, freeze-dried potassium fluoride, potassium fluoride recryslal-lized from methanol, and potassium fluoride dispersed on caleium fluoride. ... [Pg.67]

The active intermediates of these reactions are believed to be titanium enolates formed by the transmetallation with titanium(IV) chloride. Alkylation of enol silyl ethers is also elTected by use of benzyltrimethyl ammonium fluoride, in which quaternary ammonium enolates are produced as intermediates (eq (27)) [24]. [Pg.397]

Lewis add complexes formed by the reactions of various aminoalcohols with Et2AlG [778, 824] or by the reaction of Et2Zn with a chiral sulfamide [806] have displayed a low efficiency in the asymmetric condensations of ketene and thioketene silyiacetals derived from acetic acid with aldehydes. Disappointing se-lectivities have also been observed with some binaphtol-titanium complexes [778]. However, Mikami and Matsukawa [1296] recently performed the enantioselective condensation of various aldehydes with acetic acid derivatives in the presence of a chiral binaphtol-titanium complex. Good selectivities were observed when the reaction was performed at 0°C in toluene (Figure 6.95). Quaternary ammonium fluorides derived from cinchona alkaloids have been proposed as catalysts to perform additions of enoxysilanes derived from ketones to PhCHO, but the observed selectivities are modest [1303],... [Pg.350]


See other pages where Ammonium titanium fluoride reaction with is mentioned: [Pg.153]    [Pg.212]    [Pg.221]    [Pg.555]    [Pg.930]    [Pg.950]    [Pg.1036]    [Pg.1042]    [Pg.1042]    [Pg.1043]    [Pg.28]    [Pg.129]    [Pg.194]    [Pg.199]    [Pg.199]    [Pg.316]    [Pg.630]    [Pg.633]    [Pg.721]    [Pg.831]    [Pg.840]    [Pg.1069]    [Pg.1070]    [Pg.1091]    [Pg.1190]    [Pg.1192]    [Pg.772]    [Pg.149]    [Pg.489]    [Pg.428]    [Pg.559]   


SEARCH



Ammonium fluoride

Ammonium reactions with

Ammonium titanium fluoride

Ammonium titanium fluoride reaction with zeolites

Fluorides reaction with

Reaction ammonium

Titanium reactions

With fluoride

© 2024 chempedia.info