Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino extraction

Amino-4 -methylthiazole slowly decomposes on storage to a red viscous mass. It can be stored as the nitrate, which is readily deposited as pink crystals when dilute nitric acid is added to a cold ethanolic solution of the thiazole. The nitrate can be recrystallised from ethanol, although a faint pink colour persists. Alternatively, water can be added dropwise to a boiling suspension of the nitrate in acetone until the solution is just clear charcoal is now added and the solution, when boiled for a short time, filtered and cooled, deposits the colourless crystalline nitrate, m.p. 192-194° (immersed at 185°). The thiazole can be regenerated by decomposing the nitrate with aqueous sodium hydroxide, and extracting the free base with ether as before. [Pg.306]

An amino-acid, although insoluble in water (e.g., anthranilic acid), is usually soluble in excess of mineral acid in such a case it is important to make the solution only very slightly acid. This applies also to a mixture of a neutral and a basic substance, from which dil. HCl will extract an amino-acid the solution must then be carefully treated with NaOH to precipitate the amino-acid. [Pg.399]

The so-called "trypsin," obtainable from pancreatic juice and from fresh extracts of the pancreas, is not a simple enzyme but a mixture of trypsin proper (which hydrolyses proteins to proteoses and peptones) and a series of enzymes which hydrolyse these breakdown products to their constituent amino-acids. The term trypsin," when used below, refers to this mixture. [Pg.517]

Benzoates. Dissolve 0-5 g. of the amino acid in 10 ml. of 10 per cent, sodium bicarbonate solution and add 1 g. of benzoyl chloride. Shake the mixture vigorously in a stoppered test-tube remove the stopper from time to time since carbon dioxide is evolved. When the odour of benzoyl chloride has disappeared, acidify with dilute hydrochloric acid to Congo red and filter. Extract the solid with a little cold ether to remove any benzoic acid which may be present. RecrystaUise the benzoyl derivative which remains from hot water or from dilute alcohol. [Pg.436]

Dissolve 0 01 g. equivalent of the amino acid in 0 03 g. equivalent of N sodium hydroxide solution and cool to 5° in a bath of ice. Add, with rapid stirring, 0 -01 g. equivalent of 2 4-dichlorophenoxyacetyl chloride dissolved in 5 ml. of dry benzene at such a rate (5-10 minutes) that the temperature of the mixture does not rise above 15° if the reaction mixture gels after the addition of the acid chloride, add water to thin it. Remove the ice bath and stir for 2-3 hours. Extract the resulting mixture with ether, and acidify the aqueous solution to Congo red with dilute hydrochloric acid. Collect the precipitate by filtration and recrystallise it from dilute alcohol. [Pg.438]

Amino-5-methylthiazole. Suspend 76 g. of thiourea in 200 ml. of water in a 500 ml. three-necked flask equipped as in the preceding pre paration. Stir and add 92 -5 g. (80 ml.) of monochloroacetone (1) over a period of 30 minutes. The thiourea dissolves as the reaction proceeds and the temperature rises. Reflux the yellow solution for 2 hours. To the cold solution immersed in an ice bath add, with stirring, 200 g. of solid sodium hydroxide. Transfer to a separatory funnel, add a little ice water, separate the upper oil layer and extract the aqueous layer with three 100 ml. portions of ether. Dry the combined oil and ether extracts with anhydrous magnesium sulphate, remove the ether by distillation from a steam bath, and distil the residual oil under diminished pressure. Collect the 2-amino-5-methylthiazole at 130-133°/18 mm. it solidifies on coohng in ice to a solid, m.p. 44-45°. The yield is 84 g. [Pg.841]

In a typical experiment 105 mg (0.50 mmol) of 3.8c, dissolved in a minimal amount of ethanol, and 100 mg (1.50 mmol) of 3.9 were added to a solution of 1.21g (5 mmol) of Cu(N03)2 BH20 and 5 mmol of ligand in 500 ml of water in a 500 ml flask. -Amino-acid containing solutions required addition of one equivalent of sodium hydroxide. When necessary, the pH was adjusted to a value of 5 ( -amino acids) and 7.5 (amines). The flask was sealed carefully and the solution was stirred for 2A hours, followed by extraction with ether. After drying over sodium sulfate the ether was evaporated. Tire endo-exo ratios were determined from the H-NMR spectra of the product mixtures as described in Chapter 2. [Pg.103]

In a typical procedure, a solution of 0.175 mmol of L- -amino acid and 0.175 mmol of NaOH in 1 ml of water was added to a solution of 0.100 mmol of Cu(N03)2in 100 ml of water in a 100 ml flask. Tire pH was adjusted to 6.0-6.5. The catalyst solution was cooled to 0 C and a solution of 1.0 mmol of 3.8c in a minimal amount of ethanol was added, together with 2.4 mmol of 3.9. The flask was sealed carefully. After 48 hours of stirring at 0 C the reaction mixture was extracted with ether, affording 3.10c in quantitative yield After evaporation of the ether from the water layer (rotary evaporator) the catalyst solution can be reused without a significant decrease in enantioselectivity. [Pg.103]

A solution of 0.22 mol of butyllithium in 150 ml of hexane was cooled below -40°C and 140 ml of dry THF were added. Subsequently 0.20 mol of 1-dimethyl amino--4-methoxy-2-butyne (see Chapter V, Exp. 14) were added in 10 min with cooling between -35 and -45°C. After an additional 15 min 100 ml of an aqueous solution of 25 g of ammonium chloride were added with vigorous stirring. After separation of the layers four extractions with diethyl ether were carried out. The solutions were dried over potassium carbonate and then concentrated in a water-pump vacuum. Distillation of the residue gave a mixture of 8-10% of starting compound and 90-92% of the allenic ether, b.p. 50°C/12 mmHg, n 1.4648, in 82% yield (note 1). [Pg.113]

Uses. The principal use of adiponitrile is for hydrogenation to hexamethylene diamine leading to nylon-6,6. However, as a result of BASE s new adiponitrile-to-caprolactam process, a significant fraction of ADN produced may find its way into nylon-6 production. Adipoquanamine, which is prepared by the reaction of adiponitrile with dicyandiamide [461-58-5] (cyanoguanidine), may have uses in melamine—urea amino resins (qv) (see "Benzonitrile, Uses"). Its typical Hquid nitrile properties suggest its use as an extractant for aromatic hydrocarbons. [Pg.221]

Amino acid profiles of FPC ate excellent and compare favorably with whole egg except for tryptophan and lysiae (140). Hake and Atlantic FPCs prepared by isoptopanol extraction have PERs of 3.29 and 3.05, respectively, as compared with 3.0 for caseia (140). Numerous human feeding studies have been conducted with FPC. The results iadicate that high quaUty, bland FPC products can be used as proteia supplemeats but they ate aot suitable for use as a sole source of proteia. [Pg.471]

Evidence soon emerged that the endogenous opioids were peptides rather than simple morphine-like molecules (9). The first direct evidence for endogenous opioids in brain extracts was provided in 1975 when two pentapeptides were purified that differed only in the carboxyl terminal amino acids (10) (Table 1). These peptides were called methionine- (Met-) and leucine- (Leu-) enkephalin, from the Greek term meaning "in the head."... [Pg.444]

Since the discovery of amino acids in animal and plant proteins in the nineteenth century, most amino acids have been produced by extraction from proteia hydroly2ates. However, there are many problems in the efficient isolation of the desired amino acid in the pure form. [Pg.285]

Thaumatin. Thaumatin [53850-34-3] is a mixture of proteins extracted from the fmit of a West African plant, Thaumatococcus daniellii (Beimett) Benth. Work at Unilever showed that the aqueous extract contains two principal proteins thaumatin I and thaumatin II. Thaumatin I, mol wt 22,209, contains 207 amino acids in a single chain that is cross-linked with eight disulfide bridges. Thaumatin II has the same number of amino acids, but there are five sequence differences. Production of thaumatins via genetic engineering technology has been reported (99). [Pg.281]

A two-site immunometric assay of undecapeptide substance P (SP) has been developed. This assay is based on the use of two different antibodies specifically directed against the N- and C-terminal parts of the peptide (95). Affinity-purified polyclonal antibodies raised against the six amino-terminal residues of the molecule were used as capture antibodies. A monoclonal antibody directed against the carboxy terminal part of substance P (SP), covalently coupled to the enzyme acetylcholinesterase, was used as the tracer antibody. The assay is very sensitive, having a detection limit close to 3 pg/mL. The assay is fiiUy specific for SP because cross-reactivity coefficients between 0.01% were observed with other tachykinins, SP derivatives, and SP fragments. The assay can be used to measure the SP content of rat brain extracts. [Pg.247]

The elemental and vitamin compositions of some representative yeasts are Hsted in Table 1. The principal carbon and energy sources for yeasts are carbohydrates (usually sugars), alcohols, and organic acids, as weU as a few other specific hydrocarbons. Nitrogen is usually suppHed as ammonia, urea, amino acids or oligopeptides. The main essential mineral elements are phosphoms (suppHed as phosphoric acid), and potassium, with smaller amounts of magnesium and trace amounts of copper, zinc, and iron. These requirements are characteristic of all yeasts. The vitamin requirements, however, differ among species. Eor laboratory and many industrial cultures, a commercial yeast extract contains all the required nutrients (see also Mineral nutrients). [Pg.387]

Other chemicals of possible concern for health and safety found ia yeast proteias iaclude tyramiae (0—2.25 mg/g) and histamine (0.2—2.8 mg/g), formed by decarboxylation of the corresponding amino acids (38). These compounds are also found ia other fermeated (including pickled) foods. Their preseace ia yeast extracts used as condiments coatributes very Htde to human iatake. Likewise, the nephrotoxic compouad lysiaoalaniae has beea ideatified ia alkah-treated yeast extracts, at a level of 0.12 mg/g. However, the chemical occurs at similar low coaceatratioas ia almost all heat- and alkaU-treated foods. [Pg.394]

The earliest references to cinnamic acid, cinnamaldehyde, and cinnamyl alcohol are associated with thek isolation and identification as odor-producing constituents in a variety of botanical extracts. It is now generally accepted that the aromatic amino acid L-phenylalanine [63-91-2] a primary end product of the Shikimic Acid Pathway, is the precursor for the biosynthesis of these phenylpropanoids in higher plants (1,2). [Pg.173]

Contamination by water-insoluble reaction by-products such as l-amino-2,4-dibromoanthraquinone affects the quaUty of dyestuff signiftcandy. Therefore, several methods for purification have been reported. Examples are extraction of impurities with organic solvent (18), or precipitation of bromamine acid from concentrated (60—85%) sulfuric acid (26). [Pg.310]


See other pages where Amino extraction is mentioned: [Pg.332]    [Pg.542]    [Pg.46]    [Pg.48]    [Pg.371]    [Pg.506]    [Pg.419]    [Pg.1]    [Pg.217]    [Pg.368]    [Pg.545]    [Pg.151]    [Pg.444]    [Pg.200]    [Pg.204]    [Pg.544]    [Pg.88]    [Pg.271]    [Pg.303]    [Pg.359]    [Pg.206]    [Pg.14]    [Pg.226]    [Pg.48]    [Pg.50]    [Pg.78]    [Pg.78]    [Pg.87]    [Pg.394]    [Pg.18]    [Pg.107]    [Pg.301]   
See also in sourсe #XX -- [ Pg.100 ]

See also in sourсe #XX -- [ Pg.292 , Pg.293 , Pg.298 ]




SEARCH



Amino acids extraction

Amino acids solid-phase extraction

Amino acids solvent extraction

Extraction and Dansylation of Amino Acids

Extraction of Amino Acids

Extraction of proteins and amino

Extraction of proteins and amino acids

Solvent extraction of amino acids

© 2024 chempedia.info