Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amino acids solvent extraction

Amino acids Solvent extraction of 2,4-dinitro phenol AAS and TLC [267]... [Pg.438]

To sequence an entire polypeptide, a chemical method devised by Pehr Edman is usually employed. The Edman degradation procedure labels and removes only the amino-terminal residue from a peptide, leaving all other peptide bonds intact (Fig. 3-25b). The peptide is reacted with phenylisothiocyanate under mildly alkaline conditions, which converts the amino-terminal amino acid to a phenylthiocarbamoyl (PTC) adduct. The peptide bond next to the PTC adduct is then cleaved in a step carried out in anhydrous trifluo-roacetic acid, with removal of the amino-terminal amino acid as an anilinothiazolinone derivative. The deriva-tized amino acid is extracted with organic solvents, converted to the more stable phenylthiohydantoin derivative by treatment with aqueous acid, and then identified. The use of sequential reactions carried out under first basic and then acidic conditions provides control over... [Pg.98]

The p-nitrophenol fonned as a byproduct in this reaction is easily removed by extraction with dilute aqueous base. Unlike free amino acids and peptides, protected peptides are not zwitterionic and are more soluble in organic solvents than in water. [Pg.1141]

Biotechnological processes may be divided into fermentation processes and biotransformations. In a fermentation process, products are formed from components in the fermentation broth, as primary or secondary metabolites, by microorganisms or higher cells. Product examples are amino acids, vitamins, or antibiotics such as penicillin or cephalosporin. In these cases, co-solvents are sometimes used for in situ product extraction. [Pg.336]

Recent development of the use of reversed micelles (aqueous surfactant aggregates in organic solvents) to solubilize significant quantities of nonpolar materials within their polar cores can be exploited in the development of new concepts for the continuous selective concentration and recovery of heavy metal ions from dilute aqueous streams. The ability of reversed micelle solutions to extract proteins and amino acids selectively from aqueous media has been recently demonstrated the results indicate that strong electrostatic interactions are the primary basis for selectivity. The high charge-to-surface ratio of the valuable heavy metal ions suggests that they too should be extractable from dilute aqueous solutions. [Pg.137]

In polar solvents, the structure of the acridine 13 involves some zwitterionic character 13 a [Eq. (7)] and the interior of the cleft becomes an intensely polar microenvironment. On the periphery of the molecule a heavy lipophilic coating is provided by the hydrocarbon skeleton and methyl groups. A third domain, the large, flat aromatic surface is exposed by the acridine spacer unit. This unusual combination of ionic, hydrophobic and stacking opportunities endows these molecules with the ability to interact with the zwitterionic forms of amino acids which exist at neutral pH 24). For example, the acridine diacids can extract zwitterionic phenylalanine from water into chloroform, andNMR evidence indicates the formation of 2 1 complexes 39 such as were previously described for other P-phenyl-ethylammonium salts. Similar behavior is seen with tryptophan 40 and tyrosine methyl ether 41. The structures lacking well-placed aromatics such as leucine or methionine are not extracted to measureable degrees under these conditions. [Pg.208]

An alternative to the extraction of intact PHA polymer is the isolation of PHA monomers, oligomers, or various derivatives such as esters [74]. PH As are composed of stereo-chemically pure P-3-hydroxyacids, and therefore can be used as a source of optically pure organic substrates for the chemical and pharmaceutical industry [79]. In this protocol, the defatted cake containing PHA polymer would be chemically treated to obtain the PHA derivatives. For example, transesterification of the meal with methanol would give rise to methyl esters of 3-hydroxyalkanoic acids. The PHA derivatives would then be separated from the meal with appropriate solvents. One potential disadvantage of this method is the potential alteration of the quality of the residual meal if the harsh chemical treatments required for the production of PHA derivatives lead to protein or amino acid breakdown. [Pg.226]

Chromatographic procedures applied to the identification of proteinaceous paint binders tend to be rather detailed consisting of multiple analytical steps ranging from solvent extractions, chromatography clean up, hydrolysis, derivatisation reactions, and measurement to data analysis. Knowledge of the error introduced at each step is necessary to minimise cumulative uncertainty. Reliable results are consequently obtained when laboratory and field blanks are carefully characterised. Additionally, due to the small amounts of analyte and the high sensitivity of the analysis, the instrument itself must be routinely calibrated with amino acid standards along with measurements of certified reference proteins. All of these factors must be taken into account because many times there is only one chance to take the measurement. [Pg.247]

The amino acid analyser using fluorescamine as the detecting reagent has been used to measure 250 picomoles of individual amino acids routinely [262], and dansyl derivatives have been detected fluorometrically at the 10 15 M level [260]. Where the amounts of amino acid are high enough, the fluorescamine method, with no concentration step, can be recommended for its simplicity. At lower concentrations, the dansyl method, with an extraction of the fluorescent derivatives into a non-polar solvent, should be more sensitive and less subject to interferences. For proteins and peptides, the fluorescamine method seems to be the most sensitive available method. [Pg.408]

The potential for the preservation of lipids is relatively high since by definition they are hydrophobic and not susceptible to hydrolysis by water, unlike most amino acids and DNA. A wide range of fatty acids, sterols, acylglycerols, and wax esters have been identified in visible surface debris on pottery fragments or as residues absorbed into the permeable ceramic matrix. Isolation of lipids from these matrices is achieved by solvent extraction of powdered samples and analysis is often by the powerful and sensitive technique of combined gas chromatography-mass spectrometry (GC-MS see Section 8.4). This approach has been successfully used for the identification of ancient lipid residues, contributing to the study of artifact... [Pg.23]


See other pages where Amino acids solvent extraction is mentioned: [Pg.222]    [Pg.60]    [Pg.48]    [Pg.217]    [Pg.226]    [Pg.1015]    [Pg.218]    [Pg.83]    [Pg.151]    [Pg.51]    [Pg.186]    [Pg.311]    [Pg.76]    [Pg.62]    [Pg.101]    [Pg.27]    [Pg.200]    [Pg.231]    [Pg.232]    [Pg.364]    [Pg.410]    [Pg.410]    [Pg.410]    [Pg.411]    [Pg.49]    [Pg.128]    [Pg.132]    [Pg.79]    [Pg.84]    [Pg.86]    [Pg.125]    [Pg.225]    [Pg.263]    [Pg.367]    [Pg.1083]    [Pg.370]    [Pg.216]    [Pg.172]    [Pg.94]    [Pg.97]   
See also in sourсe #XX -- [ Pg.335 ]




SEARCH



Acid extractable

Acid extractables

Acid extraction

Acidic extractants

Acids solvents

Amino acids extraction

Amino acids solvents

Amino extraction

Extractable Acidity

Extraction acidic extractants

Solvent extraction of amino acids

Solvents acidic

Solvents acidity

© 2024 chempedia.info