Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amine room temperature

Amines Room temperature or low-temperature cure Versamine (Cognis), Ancamine (Air Products), Aradur (Huntsman), and Epi-Cure (Hexion Specialty Chemicals) 1 15 parts per hundred resin (phr), fast gel times... [Pg.83]

Cycloalipatic amine Room temperature-curing, convenient handling, long pot life, better toughness and thermal properties of the resulting network compared with aliphatic amine-cured network High cost, can work at a service temperature <100 C poor chemical resistance poor solvent resistance... [Pg.163]

The disadvantages attending the use of acetic anhydride alone are absent when the acetylation is conducted in aqueous solution according to the following procedure. The amine is dissolved in water containing one equivalent of hydrochloric acid, slightly more than one equivalent of acetic anhydride is added to the solution, followed by enough sodium acetate to neutralise the hydrochloric acid, and the mixture is shaken. The free amine which is liberated is at once acetylated. It must be pointed out that the hydrolysis of acetic anhydride at room temperature is extremely slow and that the free amine reacts much more readily with the anhydride than does the water this forms the experimental basis for the above excellent method of acetylation. [Pg.576]

Some amines, such as the nitroanilines and the naphthylamines, give somewhat more stable diazonium compounds and may be diazotised at room temperature, when the reaction proceeds more rapidly. If the amine salt is only sparingly soluble in water, it should be suspended in the acid in a fine state of division (this is generally attained by cooling a hot solution and stirring vigorously), and it passes into solution as the soluble diazonium salt is formed. [Pg.591]

Meihylamine hydrochloride method. Place 100 g. of 24 per cent, methyl-amine solution (6) in a tared 500 ml. flask and add concentrated hydrochloric acid (about 78 ml.) until the solution is acid to methyl red. Add water to bring the total weight to 250 g., then introduce lSO g. of urea, and boil the solution gently under reflux for two and three-quarter hours, and then vigorously for 15 minutes. Cool the solution to room temperature, dissolve 55 g. of 95 per cent, sodium nitrite in it, and cool to 0°. Prepare a mixture of 300 g. of crushed ice and 50 g. of concentrated sulphuric acid in a 1500 ml. beaker surrounded by a bath of ice and salt, and add the cold methylurea - nitrite solution slowly and with mechanical stirring and at such a rate (about 1 hour) that the temperature does not rise above 0°. It is recommended that the stem of the funnel containii the methylurea - nitrite solution dip below the surface of the acid solution. The nitrosomethylurea rises to the surface as a crystalline foamy precipitate. Filter at once at the pump, and drain well. Stir the crystals into a paste with about 50 ml. of cold water, suck as dry as possible, and dry in a vacuum desiccator to constant weight. The yield is 55 g. (5). [Pg.969]

Now, contrary to popular opinions, this method need not be conducted in a sealed pipe bomb. Secondary amination by substitution is as much a reaction of opportunity as it is of brute force and heat. In fact, heating can tend to cause the reformation of safrole and isosafrole. So the simplest way to do this would be to use 500mL of ammonium hydroxide or alcoholic ammonia or, for those wishing to make MDMA or meth, 40% aqueous methylamine or alcoholic methylamine (to tell you the truth, methylamine is preferable in this method because it is more reactive that ammonia so yield will increase). This 500mL is placed in a flask and into it is poured a solution of 35g bromosafrole (30g phenylisopropyl-bromide) mixed with 50mL methanol. The flask is stoppered and stirred at room temperature for anywhere from 3 to 7 days. The chemist could also reflux the same mixture for 6-12 hours or she could throw the whole mix into a sealed pipe bomb (see How to Make section) and cook it for 5 hours in a 120-130°C oil bath. [Pg.157]

The addition of N-bromosuccinimide (1.1equiv) to a dichlo-romethane solution containing the alkene (1 equiv) and cyana-mide (4 equiv). The solution was maintained at room temperature (3 days) and then washed with water, dried, and concentrated in vacuo. Treatment of the bromocyanamide [intermediate] with 1% palladium on charcoal in methanol (1h) led to reduction of the for-madine. Addition of base to the reaction mixture (50% aqueous KOH, reflux 6h) followed by extraction with ether gave monoamine. (Yield is 48-64% final amine from alkenes analogous to safrole)... [Pg.186]

The carbopalladation is extended to homoallylic amines and sulfides[466. Treatment of 4-dimethylamino-l-butene (518) with diethyl malonate and Li2PdCl4 in THF at room temperature leads to the oily carbopalladated complex 519, hydrogenation of which affords diethyl 4-(dimethylamino) butylmalonate (520) in an overall yield of 91%. Similarly, isopropyl 3-butenyl sulfide (521) is carbopalladated with methyl cyclopentanonecarboxylate and Li2PdCl4. Reduction of the complex affords the alkylated keto ester 522 in 96% yield. Thus functionalization of alkenes is possible by this method. [Pg.96]

The alkyl azide 118 is reduced to a primary amine by the Pd on carbon-catalyzed reaction of ammonium formate in MeOH at room temperature. No racemization takes place with chiral azides[l 11,112]. [Pg.542]

Trigonal pyramidal molecules are chiral if the central atom bears three different groups If one is to resolve substances of this type however the pyramidal inversion that mterconverts enantiomers must be slow at room temperature Pyramidal inversion at nitrogen is so fast that attempts to resolve chiral amines fail because of their rapid racemization... [Pg.314]

The reaction of an aryl diazonium salt with potassium iodide is the standard method for the preparation of aryl iodides The diazonium salt is prepared from a primary aro matic amine m the usual way a solution of potassium iodide is then added and the reac tion mixture is brought to room temperature or heated to accelerate the reaction... [Pg.947]

The two-part epoxy adhesive, readily available in hardware stores or other consumer outlets, comes in two tubes. One tube contains the epoxy resin, the other contains an amine hardener. Common diamine room temperature epoxy curing agents are materials such as the polyamides, available under the trade name Versamid. These polyamides are the reaction products of dimer acids and aUphatic diamines such as diethylenetriamine [111-40-0] ... [Pg.232]

Reactions with Organic Compounds. Tetrafluoroethylene and OF2 react spontaneously to form C2F and COF2. Ethylene and OF2 may react explosively, but under controlled conditions monofluoroethane and 1,2-difluoroethane can be recovered (33). Benzene is oxidized to quinone and hydroquinone by OF2. Methanol and ethanol are oxidized at room temperature (4). Organic amines are extensively degraded by OF2 at room temperature, but primary aHphatic amines in a fluorocarbon solvent at —42°C are smoothly oxidized to the corresponding nitroso compounds (34). [Pg.220]

Diborane [19287-45-7] the first hydroborating agent studied, reacts sluggishly with olefins in the gas phase (14,15). In the presence of weak Lewis bases, eg, ethers and sulfides, it undergoes rapid reaction at room temperature or even below 0°C (16—18). The catalytic effect of these compounds on the hydroboration reaction is attributed to the formation of monomeric borane complexes from the borane dimer, eg, borane-tetrahydrofuran [14044-65-6] (1) or borane—dimethyl sulfide [13292-87-0] (2) (19—21). Stronger complexes formed by amines react with olefins at elevated temperatures (22—24). [Pg.308]

Aromatic diacyl peroxides such as dibenzoyl peroxide (BPO) [94-36-0] may be used with promoters to lower the usehil decomposition temperatures of the peroxides, although usually with some sacrifice to radical generation efficiency. The most widely used promoter is dimethylaniline (DMA). The BPO—DMA combination is used for hardening (curing) of unsaturated polyester resin compositions, eg, body putty in auto repair kits. Here, the aromatic amine promoter attacks the BPO to initially form W-benzoyloxydimethylanilinium benzoate (ion pair) which subsequentiy decomposes at room temperature to form a benzoate ion, a dimethylaniline radical cation, and a benzoyloxy radical that, in turn, initiates the curing reaction (33) ... [Pg.223]

Eor apphcation temperatures below 10°C or for acceleration of cure rates at room temperature, nonredox systems such as ben2oyl peroxide initiated by tertiary amines such as dimethylaruline (DMA) have been appHed widely. Even more efficient cures can be achieved using dimethyl- -toluidine (DMPT), whereas moderated cures can be achieved with diethylaruline (DEA). [Pg.319]

Reduction. Just as aromatic amine oxides are resistant to the foregoing decomposition reactions, they are more resistant than ahphatic amine oxides to reduction. Ahphatic amine oxides are readily reduced to tertiary amines by sulfurous acid at room temperature in contrast, few aromatic amine oxides can be reduced under these conditions. The ahphatic amine oxides can also be reduced by catalytic hydrogenation (27), with 2inc in acid, or with staimous chloride (28). For the aromatic amine oxides, catalytic hydrogenation with Raney nickel is a fairly general means of deoxygenation (29). Iron in acetic acid (30), phosphoms trichloride (31), and titanium trichloride (32) are also widely used systems for deoxygenation of aromatic amine oxides. [Pg.190]

CCI4 plus H2O for 10 hours at room temperature to give a 63% yield of (CH2)2CCgH40CSCl (57). Phenylthiocarbamoyl chlorides are useful as intermediates for pharmaceuticals and agrochemicals were prepared by the reaction of CCl SCl with aromatic amines (58). [Pg.132]

Ethoxylation of alkyl amine ethoxylates is an economical route to obtain the variety of properties required by numerous and sometimes smaH-volume industrial uses of cationic surfactants. Commercial amine ethoxylates shown in Tables 27 and 28 are derived from linear alkyl amines, ahphatic /-alkyl amines, and rosin (dehydroabietyl) amines. Despite the variety of chemical stmctures, the amine ethoxylates tend to have similar properties. In general, they are yellow or amber Hquids or yellowish low melting soHds. Specific gravity at room temperature ranges from 0.9 to 1.15, and they are soluble in acidic media. Higher ethoxylation promotes solubiUty in neutral and alkaline media. The lower ethoxylates form insoluble salts with fatty acids and other anionic surfactants. Salts of higher ethoxylates are soluble, however. Oil solubiUty decreases with increasing ethylene oxide content but many ethoxylates with a fairly even hydrophilic—hydrophobic balance show appreciable oil solubiUty and are used as solutes in the oil phase. [Pg.256]

Hydroxy group containing tertiary amines are also used because they become incorporated into the polymer stmcture, which eliminates odor formation ia the foam (3). Delayed-action or heat-activated catalysts are of particular interest ia molded foam appHcations. These catalysts show low activity at room temperature but become active when the exotherm builds up. In addition to the phenol salt of DBU (4), benzoic acid salts of Dabco are also used (5). [Pg.343]

Solubility. One of PVP s more outstanding attributes is its solubility in both water and a variety of organic solvents. PVP is soluble in alcohols, acids, ethyl lactate, chlorinated hydrocarbons, amines, glycols, lactams, and nitroparaffins. SolubiUty means a minimum of 10 wt % PVP dissolves at room temperature (moisture content of PVP can influence solubiUty). PVP is insoluble in hydrocarbons, ethers, ethyl acetate, j -butyl-4-acetate, 2-butanone, acetone, cyclohexanone, and chlorobenzene. Both solvent polarity and H-bonding strongly influence solubiUty (77). [Pg.529]


See other pages where Amine room temperature is mentioned: [Pg.318]    [Pg.318]    [Pg.25]    [Pg.415]    [Pg.418]    [Pg.573]    [Pg.917]    [Pg.66]    [Pg.124]    [Pg.143]    [Pg.235]    [Pg.393]    [Pg.128]    [Pg.164]    [Pg.232]    [Pg.232]    [Pg.232]    [Pg.508]    [Pg.410]    [Pg.363]    [Pg.380]    [Pg.400]    [Pg.206]    [Pg.328]    [Pg.523]    [Pg.23]    [Pg.55]    [Pg.75]    [Pg.572]   
See also in sourсe #XX -- [ Pg.123 , Pg.124 , Pg.127 ]




SEARCH



Epoxy room temperature amine curing

Hydantoin room temperature amine curing

Room Temperature Amine Curing Agents

Room temperature

Room temperature Buchwald-Hartwig amination

© 2024 chempedia.info