Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbopalladation complexes

The carbopalladation is extended to homoallylic amines and sulfides[466. Treatment of 4-dimethylamino-l-butene (518) with diethyl malonate and Li2PdCl4 in THF at room temperature leads to the oily carbopalladated complex 519, hydrogenation of which affords diethyl 4-(dimethylamino) butylmalonate (520) in an overall yield of 91%. Similarly, isopropyl 3-butenyl sulfide (521) is carbopalladated with methyl cyclopentanonecarboxylate and Li2PdCl4. Reduction of the complex affords the alkylated keto ester 522 in 96% yield. Thus functionalization of alkenes is possible by this method. [Pg.96]

A mechanism is now proposed for Mizoroki-Heck reactions involving Pd(OAc)2 as precursor associated with PPh3 (Scheme 1.22). From the rate constants of the main steps given in Scheme 1.22, it appears that, for comparable iodobenzene and styrene concentrations, the overall carbopalladation (complexation/insertion of the alkene) from PhPd(OAc)(PPh3)2... [Pg.14]

Carbopalladation (Complexation/Insertion) of the Alkene In the mechanism postulated by Heck (Scheme 19.2), fran -PhPdlL was supposed to be formed in the oxidative addition of Phi and react with the alkene. The expected frans-PhPdI(PPh3)2 is not produced but instead /rans-PhPd(OAc) (PPhj) [7c] in equilibrium with the cationic fraw5-[PhPd(PPh3)2S]+ (Scheme 19.7) [7k]. [Pg.516]

Catalytic Cycle The mechanism of Heck reactions in Scheme 19.9 points out how the precatalyst, base, ligand, and alkene affect the structure and reactivity of intermediate Pd or Pd" complexes and consequently affect the efficiency of the catalytic reaction. From the rate constants of the main steps, it appears that for comparable Phi and styrene concentrations, the overall carbopalladation (complexation/insertion of the alkene) from PhPd(OAc)(PPhj)2 is the slowest step of the catalytic cycle. This mechanism highlights the crucial role of acetates delivered by the precatalyst PdCOAc). Indeed, AcO" is a ligand of all Pd and Pd" complexes present in the catalytic cycle, mainly in ArPd(OAc)Lj involved in the rate-determining carbopalladation. [Pg.518]

Facile reaction of a carbon nucleophile with an olefinic bond of COD is the first example of carbon-carbon bond formation by means of Pd. COD forms a stable complex with PdCl2. When this complex 192 is treated with malonate or acetoacetate in ether under heterogeneous conditions at room temperature in the presence of Na2C03, a facile carbopalladation takes place to give the new complex 193, formed by the introduction of malonate to COD. The complex has TT-olefin and cr-Pd bonds. By the treatment of the new complex 193 with a base, the malonate carbanion attacks the cr-Pd—C bond, affording the bicy-clo[6.1,0]-nonane 194. The complex also reacts with another molecule of malonate which attacks the rr-olefin bond to give the bicyclo[3.3.0]octane 195 by a transannulation reaction[l2.191]. The formation of 194 involves the novel cyclopropanation reaction of alkenes by nucleophilic attack of two carbanions. [Pg.47]

The carbopalladation of allylamine with malonate affords the chelating complex 510, which undergoes insertion of methyl vinyl ketone to form the amino enone 511[463]. The allylic sulfide 512 has the same chelating effect to give the five-membered complex 513 by carbopalladation[463.464]. [Pg.95]

Recently, Larock and coworkers used a domino Heck/Suzuki process for the synthesis of a multitude of tamoxifen analogues [48] (Scheme 6/1.20). In their approach, these authors used a three-component coupling reaction of readily available aryl iodides, internal alkynes and aryl boronic acids to give the expected tetrasubsti-tuted olefins in good yields. As an example, treatment of a mixture of phenyliodide, the alkyne 6/1-78 and phenylboronic acid with catalytic amounts of PdCl2(PhCN)2 gave 6/1-79 in 90% yield. In this process, substituted aryl iodides and heteroaromatic boronic acids may also be employed. It can be assumed that, after Pd°-cata-lyzed oxidative addition of the aryl iodide, a ds-carbopalladation of the internal alkyne takes place to form a vinylic palladium intermediate. This then reacts with the ate complex of the aryl boronic acid in a transmetalation, followed by a reductive elimination. [Pg.372]

In analogy to the mechanism of the palladium-catalyzed enyne cyclization, it is postulated that exposure of palladium(O) to acetic acid promotes in situ generation of hydridopalladium acetate LnPd"(H)(OAc). Alkyne hydrometallation affords the vinylpalladium complex A-10, which upon r-carbopalladation of the appendant alkyne provides intermediate B-7. Silane-mediated cleavage of carbon-palladium bond liberates the cyclized product along palladium(O), which reacts with acetic acid to regenerate hydridopalladium acetate to close the cycle (Scheme 33). [Pg.512]

A one-pot synthesis of 3,3-disubstituted indolines was achieved by taking advantage of a sequential carbopalladation of allene, nucleophile attack, intramolecular insertion of an olefm and termination with NaBPh4 (Scheme 16.6) [10]. First, a Pd(0) species reacts with iodothiophene selectively to afford ArPdl, probably because the oxidative addition step is facilitated by coordination with the adjacent sulfur atom. Second, the ArPdl adds to allene, giving a Jt-allylpalladium complex, which is captured by a 2-iodoaniline derivative to afford an isolable allylic compound. Under more severe conditions, the oxidative addition of iodide to Pd(0) followed by the insertion of an internal olefm takes place to give an alkylpalladium complex, which is transmetallated with NaBPh4 to release the product. [Pg.927]

The possibility of Jt-allylpalladium complex formation through carbopalladation is excluded from the observation that no four- and/or six-membered rings are produced. The reaction apparently proceeds via an alternative pathway which involves a sequence of Jt-coordination of PhPdl to an allenic terminal double bond, oxypallada-tion and ensuing reductive elimination (Scheme 16.9). [Pg.928]

Homoallylic alcohols are provided by Pd-catalyzed reaction of iodobenzene, allene and aldehydes (Scheme 16.15) [19, 20]. A nucleophilic allylindium intermediate is generated through transmetallation of a Jt-allylpalladium species with indium. Such a Jt-allylpalladium complex can alternatively be provided through carbopalladation of ArPdl to a proximate acetylene followed by insertion of allene. [Pg.930]

Regarding efficiency in terms of achieving a maximum increase of molecular complexity in a minimum number of operational steps, the zipper-mode tetracyclization of the open-chain trienediyne 102 leading to the tetracyclic steroidal skeleton 103, as accomplished by Negishi et al. is particularly impressive (Scheme 28). This transformation involves four intramolecular carbopalladations with two alkyne relays forming four new G,G-bonds with the creation of four rings. [Pg.324]

The transformations of 136 proceed cleanly upon treatment with a catalytic amount of Pd(PPh3)4, in the presence of triethylamine and molecular sieve (MS) 4 A it apparently is initiated by oxidative addition of the N(sp )-0 bond of 136 to the Pd(0) complex, and this is succeeded by two or even three intramolecular carbopalladations followed by / -hydride elimination. This Heck-type reaction is not affected by the configuration of the oxime derivatives probably due to a facile enough if/Z-isomerization of the alkylideneaminopalladium intermediate. [Pg.327]

Another variant of the Heck reaction which is important in heterocyclic chemistry utilizes five membered heterocycles as olefin equivalent (2.2.)7 It is not clear whether the process, coined as heteroaryl Heck reaction follows the Heck mechanism (i. e. carbopalladation of the aromatic ring followed by //-elimination) or goes via a different route (e.g. electrophilic substitution by the palladium complex or oxidative addition into the C-H bond). Irrespective of these mechanistic uncertainties the reaction is of great synthetic value and is frequently used in the preparation of complex policyclic structures. [Pg.22]

Alike olefins, allenes also undergo palladium mediated addition in the presence of N-H or O-H bonds. Although these reactions show some similarity to Wacker-type processes, from the mechanistic point of view they are quite different. Allenes, such as the cr-aminoallene in 3.69., usually undergo addition with palladium complexes (e.g. carbopalladation in 3.69. and 3.70., or hydropalladation in 3.71.), which leads to the formation of a functionalized allylpalladium complex. Subsequent intramolecular nucleophilic attack by the amino group leads to the closure of the pyrroline ring.87... [Pg.54]

The intramolecular nucleophilic attack of a nitrogen atom on an allylpalladium complex was also used to construct a five and a six membered heterocycle in the same step. TV-substituted 2-iodobenzamides bearing an allene function in the appropriate distance from the iodine underwent cyclization through the carbopalladation of the allene moiety by the arylpalladium complex, formed in the first step of the catalytic cycle. The intermediate allylpalladium complex, part of a nine membered ring, cyclized readily to give the pyrroloisoquinolone derivative in excellent yield (4.23.). The nature of the added ligand and the solvent both had a marked influence on the efficiency of the transformation.26... [Pg.76]

In spite of its formal similarity to the above mentioned annulation processes, the reaction shown in 4.37. includes a unique migration step. Oxidative insertion of the palladium into the phenyl-iodine bond is followed by the migration of the palladium onto the more electron rich indole ring. The 2-indolylpalladium complex than carbopalladates the pendant alkync moiety and the process ends by the formal activation of a C-H bond of the phenyl substituent and subsequent reductive elimination, furnishing the pentacyclic product.48 The same strategy has been utilised in the preparation of the indoloindolone framework from /V-bcnzoyl-3-(o-iodophcnyl)-indolc in an oxidative addition - palladium migration - C-H activation sequence.49... [Pg.81]

Carbopalladation occurs with soft carbon nucleophiles. The PdCl2 complex of COD (100) is difficult to dissolve in organic solvents. However, when a heterogeneous mixture of the complex, malonate and Na2C03 in ether is stirred at room temperature, the new complex 101 is formed. This reaction is the first example of C—C bond formation and carbopalladation in the history of organopalladium chemistry. The double bond becomes electron deficient by the coordination of Pd(II), and attack of the carbon nucleophile becomes possible. The Pd-carbon n-bond in complex 101 is stabilized by coordination of the remaining alkene. The carbanion is generated by treatment of 101 with a base, and the cyclopropane 102 is formed by intramolecular nucleophilic attack. Overall, the cyclopropanation occurs by attack of the carbanion twice on the alkenic bond activated by Pd(II). The bicyclo[3.3.0]octane 103 was obtained by intermolecular attack of malonate on the complex 101 [11]. [Pg.431]

Over 35 years ago, Richard F. Heck found that olefins can insert into the metal-carbon bond of arylpalladium species generated from organomercury compounds [1], The carbopalladation of olefins, stoichiometric at first, was made catalytic by Tsutomu Mizoroki, who coupled aryl iodides with ethylene under high pressure, in the presence of palladium chloride and sodium carbonate to neutralize the hydroiodic acid formed (Scheme 1) [2], Shortly thereafter, Heck disclosed a more general and practical procedure for this transformation, using palladium acetate as the catalyst and tri-w-butyl amine as the base [3], After investigations on stoichiometric reactions by Fitton et al. [4], it was also Heck who introduced palladium phosphine complexes as catalysts, enabling the decisive extension of the ole-fination reaction to inexpensive aryl bromides [5],... [Pg.277]

A mechanistic rationale for the Pd-catalyzed addition of a C-H bond at nitriles to allenes is outlined in Scheme 3. The oxidative insertion of Pd(0) into the C-H bond of nitrile 1 produces the Pd(II) hydride species 16 (or alternatively a tautomeric structure E E2C=C=N PdH Ln may be more suitable, where E = H, alkyl, aryl and/or EWG). Carbopalladation of the allene 2 would afford the alkenylpalladium complex 17 (carbopalladation mechanism), which would undergo reductive coupling to give the addition product 3 and regenerates Pd(0) species. As an alternative mechanism, it may be considered that the hydropalladation of allenes with the Pd(II) intermediate 16 gives the jr-allylpalladium complex 18 which undergoes reductive coupling to afford the adduct 3 and a Pd(0) species (hydropalladation mechanism). [Pg.330]

Step 5 of the mechanism shown in Figure 16.35 (part II) is new. It consists of the cw-selec-tive addition of the aryl-Pd complex to the C=C double bond of the acrylic acid methyl ester, i.e., a carbopalladation of this double bond. A related reaction, the cw-selective car-bocupratlon of C=C triple bonds, was mentioned in connection with Figure 16.17. The regioselectivity of the carbopalladation is such that the organic moiety is bonded to the methylene carbon and Pd to the methyne carbon of the reacting C=C double bond. The addition product is an alkyl-Pd(II) complex. [Pg.730]

Annelation. The Pd(0) complex in combination with N(C2H5)3 (1.5-2 equiv.) effects cyclic carbopalladation of substrates such as 1, a cyclohexene substituted by a y-iodoallyl electrophile group and activated by a carbonyl group,... [Pg.302]


See other pages where Carbopalladation complexes is mentioned: [Pg.127]    [Pg.576]    [Pg.580]    [Pg.126]    [Pg.105]    [Pg.230]    [Pg.309]    [Pg.311]    [Pg.925]    [Pg.311]    [Pg.324]    [Pg.351]    [Pg.9]    [Pg.62]    [Pg.95]    [Pg.903]    [Pg.43]    [Pg.49]    [Pg.117]    [Pg.428]    [Pg.174]    [Pg.151]    [Pg.1323]   
See also in sourсe #XX -- [ Pg.1330 , Pg.1331 ]




SEARCH



Carbopalladations

Organopalladium carbopalladation, palladium®) complexes

Palladium®) complexes carbopalladation

Palladium®) complexes hydropalladation/carbopalladation

© 2024 chempedia.info