Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl alcohol, preparation

Desulfurization of fl, a-epoxy sulfones 239 prepared from allylic sulfones 238 and m-chloroperbenzoic acid with sodium amalgam leads to the formation of allyl alcohols (240) in good yields (equation 144)138. Allyl alcohols prepared by this method are listed in Table 16. [Pg.811]

Scheme 6.151 Range of allylic alcohols prepared from 145-catalyzed MBH reactions of2-cyclohexene-l-one with various aldehydes. Scheme 6.151 Range of allylic alcohols prepared from 145-catalyzed MBH reactions of2-cyclohexene-l-one with various aldehydes.
Titu D, Chadha A. Enantiomerically pure allylic alcohols preparation by Candida parapsilosis ATCC 7330 mediated deracemisation. Tetrahedron Asymm. 2008 19 1698-1701. [Pg.1042]

Allyl Chloride. Comparatively poor yields are obtained by the zinc chloride - hydrochloric acid method, but the following procedure, which employs cuprous chloride as a catalyst, gives a yield of over 90 per cent. Place 100 ml. of allyl alcohol (Section 111,140), 150 ml. of concentrated hydrochloric acid and 2 g. of freshly prepared cuprous chloride (Section II,50,i one tenth scale) in a 750 ml. round-bottomed flask equipped with a reflux condenser. Cool the flask in ice and add 50 ml. of concen trated sulphuric acid dropwise through the condenser with frequent shaking of the flask. A little hydrogen chloride may be evolved towards the end of the reaction. Allow the turbid liquid to stand for 30 minutes in order to complete the separation of the allyl chloride. Remove the upper layer, wash it with twice its volume of water, and dry over anhydrous calcium chloride. Distil the allyl chloride passes over at 46-47°. [Pg.276]

Allyl alcohol may be prepared by heating glycerol with formic acid ... [Pg.459]

Formation of AllylEsters. AEyl esters are formed by reaction of aEyl chloride with sodium salts of appropriate acids under conditions of controEed pH. Esters of the lower alkanoic, alkenoic, alkanedioic, cycloalkanoic, benzenecarboxyEc, alkylbenzene carboxyEc, and aromatic dicarboxyEc acids maybe prepared in this manner (25). More information can be found about the reactivity of aEyl compounds (see Allyl alcohol and mono allyl derivatives). [Pg.33]

The remarkable stereospecificity of TBHP-transition metal epoxidations of allylic alcohols has been exploited by Sharpless group for the synthesis of chiral oxiranes from prochiral allylic alcohols (Scheme 76) (81JA464) and for diastereoselective oxirane synthesis from chiral allylic alcohols (Scheme 77) (81JA6237). It has been suggested that this latter reaction may enable the preparation of chiral compounds of complete enantiomeric purity cf. Scheme 78) ... [Pg.116]

The trimethoxy derivative is too labile for most applications, but the mono and diderivatives have been used extensively in the preparation of oligonucleotides and oligonucleosides. The monomethoxy derivative has been used for the selective protection of a primary allylic alcohol over a secondary allylic alcohol (MMTr, Pyr, -10°). ... [Pg.63]

This procedure illustrates a general method for the preparation of 2-hydroxybicyclo[3.2.0]heptanes by copper(I)-catalyzed photobicyclization of 3-hydroxy-1,6-heptadienes, and a general route to the requisite dienes from allyl alcohols by conversion to 4-pentenals and treatment of the latter with vinyl Grignard reagents. [Pg.132]

Allyl lactate has been prepared by the repeated treatment of lactic acid or its polymer with allyl alcohol in the presence of mineral acid. ... [Pg.6]

This monomer is prepared by reacting cyanuric chloride with excess allyl alcohol in the presence of sodium hydroxide at 15-20°C. Laminates based on polyester resins containing triallyl cyanurate are claimed to be able to withstand a temperaure of 250°C for short periods. [Pg.699]

A number of useful resins have been prepared from allyl compounds, i.e. derivatives of allyl alcohol CH2 = CH CH20H. One of these, diethylene glycol... [Pg.708]

Nickel peroxide is a solid, insoluble oxidant prepared by reaction of nickel (II) salts with hypochlorite or ozone in aqueous alkaline solution. This reagent when used in nonpolar medium is similar to, but more reactive than, activated manganese dioxide in selectively oxidizing allylic or acetylenic alcohols. It also reacts rapidly with amines, phenols, hydrazones and sulfides so that selective oxidation of allylic alcohols in the presence of these functionalities may not be possible. In basic media the oxidizing power of nickel peroxide is increased and saturated primary alcohols can be oxidized directly to carboxylic acids. In the presence of ammonia at —20°, primary allylic alcohols give amides while at elevated temperatures nitriles are formed. At elevated temperatures efficient cleavage of a-glycols, a-ketols... [Pg.248]

The reduction of allylic systems is frequently used to generate isolated double bonds. Suitable systems are obtained from oe,jS-unsaturated ketones via allylic alcohols (ref. 185, p. 256 ref. 283, 284) for example, the preparation of A" -cholestene (135). [Pg.345]

Mixtures of anhydrous hydrogen fluoride and tetrahydrofuran are successfully used as fluorinating agents to convert 1,1,2-trifluoro-l-allcen-3-ols, easily prepared from bromotrifluoroethene via lithiation followed by the reaction with aldehydes or ketones, to 1,1,1,2-tetrafluoro-2-alkenes The yields are optimal with a 5 1 ratio of hydrogen fluoride to tetrahydrofuran The fluorination reaction involves a fluonde lon-induced rearrangement (Sf,j2 mechanism) of allylic alcohols [65] (equation 40)... [Pg.216]

Butyl ethers can be prepared from a variety of alcohols, including allylic alcohols. The ethers are stable to most reagents except strong acids. The /-butyl ether is probably one of the more underused alcohol protective groups, considering its stability, ease and efficiency of introduction, and ease of cleavage. [Pg.65]

Allyl alcohol, TsOH, benzene, -H20. These conditions were used to prepare esters of amino acids. [Pg.410]

The Sharpless-Katsuki asymmetric epoxidation reaction (most commonly referred by the discovering scientists as the AE reaction) is an efficient and highly selective method for the preparation of a wide variety of chiral epoxy alcohols. The AE reaction is comprised of four key components the substrate allylic alcohol, the titanium isopropoxide precatalyst, the chiral ligand diethyl tartrate, and the terminal oxidant tert-butyl hydroperoxide. The reaction protocol is straightforward and does not require any special handling techniques. The only requirement is that the reacting olefin contains an allylic alcohol. [Pg.50]

A number of reaction variables or parameters have been examined. Catalyst solutions should not be prepared and stored since the resting catalyst is not stable to long term storage. However, the catalyst solution must be aged prior to the addition of allylic alcohol or TBHP. Diethyl tartrate and diisopropyl tartrate are the ligands of choice for most allylic alcohols. TBHP and cumene hydroperoxide are the most commonly used terminal oxidant and are both extremely effective. Methylene chloride is the solvent of choice and Ti(i-OPr)4 is the titanium precatalyst of choice. Titanium (IV) t-butoxide is recommended for those reactions in which the product epoxide is particularly sensitive to ring opening from alkoxide nucleophiles. ... [Pg.54]

As with i -substituted allyl alcohols, 2,i -substituted allyl alcohols are epoxidized in excellent enantioselectivity. Examples of AE reactions of this class of substrate are shown below. Epoxide 23 was utilized to prepare chiral allene oxides, which were ring opened with TBAF to provide chiral a-fluoroketones. Epoxide 24 was used to prepare 5,8-disubstituted indolizidines and epoxide 25 was utilized in the formal synthesis of macrosphelide A. Epoxide 26 represents an AE reaction on the very electron deficient 2-cyanoallylic alcohols and epoxide 27 was an intermediate in the total synthesis of (+)-varantmycin. [Pg.56]

There are only limited examples of AE reactions on 2,3Z-substituted allyl alcohols. This may be due in part to the difficulty involved in selectively preparing the starting allylic alcohol. [Pg.56]

The AE reactions on 2,5,5-trisubstituted allyl alcohols have received little attention, due in part the limited utility of the product epoxides. Selective ring opening of tetrasubstituted epoxides are difficult to achieve. Epoxide 39 was prepared using stoichiometric AE conditions and were subsequently elaborated to Darvon alcohol. Epoxides 40 and 41 were both prepared in good selectivity and subsequently utilized in the preparation of (-)-cuparene and the polyfunctoinal carotenoid peridinin, respectively. Scheme 1.6.12... [Pg.58]

The application of the AE reaction to kinetic resolution of racemic allylic alcohols has been extensively used for the preparation of enantiomerically enriched alcohols and allyl epoxides. Allylic alcohol 48 was obtained via kinetic resolution of the racemic secondary alcohol and utilized in the synthesis of rhozoxin D. Epoxy alcohol 49 was obtained via kinetic resolution of the enantioenriched secondary allylic alcohol (93% ee). The product epoxy alcohol was a key intermediate in the synthesis of (-)-mitralactonine. Allylic alcohol 50 was prepared via kinetic resolution of the secondary alcohol and the product utilized in the synthesis of (+)-manoalide. The mono-tosylated 3-butene-1,2-diol is a useful C4 building block and was obtained in 45% yield and in 95% ee via kinetic resolution of the racemic starting material. [Pg.59]

Sharpless and Masumune have applied the AE reaction on chiral allylic alcohols to prepare all 8 of the L-hexoses. ° AE reaction on allylic alcohol 52 provides the epoxy alcohol 53 in 92% yield and in >95% ee. Base catalyze Payne rearrangement followed by ring opening with phenyl thiolate provides diol 54. Protection of the diol is followed by oxidation of the sulfide to the sulfoxide via m-CPBA, Pummerer rearrangement to give the gm-acetoxy sulfide intermediate and finally reduction using Dibal to yield the desired aldehyde 56. Homer-Emmons olefination followed by reduction sets up the second substrate for the AE reaction. The AE reaction on optically active 57 is reagent... [Pg.59]

Desymmetrization of meso-bis-allylic alcohols is an effective method for the preparation of chiral functionalized intermediates from meso-substrates. Schreiber et al has shown that divinyl carbonyl 58 is epoxidized in good enantioselectivity. However, because the product epoxy alcohols 59 and 60 also contain a reactive allylic alcohol that are diastereomeric in nature, a second epoxidation would occur at different rates and thus affect the observed ee for the first AE reaction and the overall de. Indeed, the major diastereomeric product epoxide 59 resulting from the first AE is less reactive in the second epoxidation. Thus, high de is easily obtainable since the second epoxidation removes the minor diastereomer. [Pg.60]

Stereoselective preparation of CEi-allyl alcohols via radical elimination from ruin -y-phenylthio-fi-nkro alcohols has been reported. The requisiteruin -fi-nitro sulfides are prepared by protonadon of nitronates at low temperanire Isee Chapter 4, and subsequent treatment v/ith Bu-vSnH induces and eliminadon to givelE -alkenes selecdvely IseeEq. 7.112. Unfortunately, it is difficult to get the pure syu-fi-nitro sulfides. Treatment of a rruxnire of syu- and ruin -fi-nitrosulfides v/ith Bu- SnH results in formadon of a rruxnire of (Ey and lZ -alkenes. [Pg.217]


See other pages where Allyl alcohol, preparation is mentioned: [Pg.494]    [Pg.374]    [Pg.494]    [Pg.374]    [Pg.329]    [Pg.321]    [Pg.337]    [Pg.362]    [Pg.370]    [Pg.374]    [Pg.83]    [Pg.58]    [Pg.244]    [Pg.245]    [Pg.221]    [Pg.105]    [Pg.591]    [Pg.50]    [Pg.57]    [Pg.129]    [Pg.106]    [Pg.167]    [Pg.73]    [Pg.217]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Alcohols preparation

Allyl alcohol, preparation properties

Allyl preparation

Allylic alcohol preparation

Allylic alcohol preparation

Glycerol preparation from allyl alcohol

Homo-allylic alcohols preparation

© 2024 chempedia.info