Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemic secondary alcohols

Various racemic secondary alcohols with different substituents, eg, a-hydroxyester (60), are resolved by PFL neatly quantitatively (75). The effect of adjacent unsatuiation on enzyme-catalyzed kinetic resolutions was thoroughly studied for a series of aHyUc (61), propargyUc (62), and phenyl-substituted 2-aIkanols (76,77). Excellent selectivity was observed for (E)-aHyhc alcohols whereas (Z)-isomers showed poor selectivity (76). [Pg.340]

The application of the AE reaction to kinetic resolution of racemic allylic alcohols has been extensively used for the preparation of enantiomerically enriched alcohols and allyl epoxides. Allylic alcohol 48 was obtained via kinetic resolution of the racemic secondary alcohol and utilized in the synthesis of rhozoxin D. Epoxy alcohol 49 was obtained via kinetic resolution of the enantioenriched secondary allylic alcohol (93% ee). The product epoxy alcohol was a key intermediate in the synthesis of (-)-mitralactonine. Allylic alcohol 50 was prepared via kinetic resolution of the secondary alcohol and the product utilized in the synthesis of (+)-manoalide. The mono-tosylated 3-butene-1,2-diol is a useful C4 building block and was obtained in 45% yield and in 95% ee via kinetic resolution of the racemic starting material. [Pg.59]

It is well known that certain microorganisms are able to effect the deracemization of racemic secondary alcohols with a high yield of enantiomerically enriched compounds. These deracemization processes often involve two different alcohol dehydrogenases with complementary enantiospedficity. In this context Porto ef al. [24] have shown that various fungi, induding Aspergillus terreus CCT 3320 and A. terreus CCT 4083, are able to deracemize ortho- and meta-fluorophenyl-l-ethanol in good... [Pg.122]

Figure 8.17 Reaction of an alkyl halide with hydroxide ion. (a) A primary halide reacts by an SN2 mechanism, causing Walden inversion about the central, chiral carbon, (b) A tertiary halide reacts by an SN1 mechanism (the rate-determining step of which is unimolecular dissociation, minimizing the extent of Walden inversion and maximizing the extent of racemization). Secondary alcohols often react with both Sn 1 and SN2 mechanistic pathways proceeding concurrently... Figure 8.17 Reaction of an alkyl halide with hydroxide ion. (a) A primary halide reacts by an SN2 mechanism, causing Walden inversion about the central, chiral carbon, (b) A tertiary halide reacts by an SN1 mechanism (the rate-determining step of which is unimolecular dissociation, minimizing the extent of Walden inversion and maximizing the extent of racemization). Secondary alcohols often react with both Sn 1 and SN2 mechanistic pathways proceeding concurrently...
In particular, the combined action of a transition metal catalyst and a lipase in organic solvents for the racemization and esterification steps, respectively, has been applied for the conversion of racemic secondary alcohols into their esters... [Pg.284]

The enantioselective oxidative coupling of 2-naphthol itself was achieved by the aerobic oxidative reaction catalyzed by the photoactivated chiral ruthenium(II)-salen complex 73. 2 it reported that the (/ ,/ )-chloronitrosyl(salen)ruthenium complex [(/ ,/ )-(NO)Ru(II)salen complex] effectively catalyzed the aerobic oxidation of racemic secondary alcohols in a kinetic resolution manner under visible-light irradiation. The reaction mechanism is not fully understood although the electron transfer process should be involved. The solution of 2-naphthol was stirred in air under irradiation by a halogen lamp at 25°C for 24 h to afford BINOL 66 as the sole product. The screening of various chiral diamines and binaphthyl chirality revealed that the binaphthyl unit influences the enantioselection in this coupling reaction. The combination of (/f,f )-cyclohexanediamine and the (R)-binaphthyl unit was found to construct the most matched hgand to obtain the optically active BINOL 66 in 65% ee. [Pg.51]

The lipase-catalyzed resolutions usually are performed with racemic secondary alcohols in the presence of an acyl donor in hydrophobic organic solvents such as toluene and tert-butyl methyl ether (Scheme 1.3). In case the enzyme is highly enantioselective E = 200 or greater), the resolution reaction in general is stopped at nearly 50% conversion to obtain both unreacted enantiomers and acylated enantiomers in enantiomerically enriched forms. With a moderately enantioselective enzyme E = 20-50), the reaction carries to well over 50% conversion to get unreacted enantiomer of high optical purity at the cost of acylated enantiomer of lower optical purity. The enantioselectivity of lipase is largely dependent on the structure of substrate as formulated by Kazlauskas [6] most lipases show... [Pg.4]

Primary alcohols were oxidised to aldehydes and (less readily) secondary alcohols to ketones by Ru(N0)Cl(salen = )/03//UV (incandescent or halogen lamp), hi competitive experiments between 1- and 2-decanol or benzyl alcohols only the primary alcohol was oxidised [827]. With Ru(NO)Cl(salen )/(Cl2pyNO) or TMPNO or Oj/C H /UV (TMPNO=tetra-methylpyridine-iV,iV -oxide) racemic secondary alcohols were asymmetrically oxidised to ketones [828]. A Ru(NO)(salen " ) complex was used as Ru(N0)Cl(salen " )/02/UV/CgH3Cl to oxidise racemic secondary alcohols to the ketones in the presence of l,3-bis(p-bromophenyl)propane-l,3-dione e.e. of 55-99% were achieved [829], Chiral Ru(NO)Cl(salen ) complexes were made... [Pg.90]

Naturally occurring Upases are (R)-selective for alcohols according to Kazlauskas rule [58, 59]. Thus, DKR of alcohols employing lipases can only be used to transform the racemic alcohol into the (R)-acetate. Serine proteases, a sub-class of hydrolases, are known to catalyze transesterifications similar to those catalyzed by lipases, but, interestingly, often with reversed enantioselectivity. Proteases are less thermostable enzymes, and for this reason only metal complexes that racemize secondary alcohols at ambient temperature can be employed for efficient (S)-selective DKR of sec-alcohols. Ruthenium complexes 2 and 3 have been combined with subtilisin Carlsberg, affording a method for the synthesis of... [Pg.130]

The integration of a catalyzed kinetic enantiomer resolution and concurrent racemization is known as a dynamic kinetic resolution (DKR). This asymmetric transformation can provide a theoretical 100% yield without any requirement for enantiomer separation. Enzymes have been used most commonly as the resolving catalysts and precious metals as the racemizing catalysts. Most examples involve racemic secondary alcohols, but an increasing number of chiral amine enzyme DKRs are being reported. Reetz, in 1996, first reported the DKR of rac-2-methylbenzylamine using Candida antarctica lipase B and vinyl acetate with palladium on carbon as the racemization catalyst [20]. The reaction was carried out at 50°C over 8 days to give the (S)-amide in 99% ee and 64% yield. Rather surpris-... [Pg.276]

The combination of Ru complex-catalyzed stereomutation of secondary alcohols with enzyme-catalyzed enantioselective acylation is an efficient procedure to obtain chiral acyloxy compounds with excellent optical purity from a variety of racemic secondary alcohols via dynamic kinetic resolution [112]. [Pg.36]

Figure 1.10. Kinetic resolution of racemic secondary alcohols by BINAP-Ru catalyzed hydrogenation. Figure 1.10. Kinetic resolution of racemic secondary alcohols by BINAP-Ru catalyzed hydrogenation.
Enzymatic resolution of racemic secondary alcohols by enantiomer-selective acylation gives optically pure compounds with up to 50% yield [332], When this method is coupled with the principle of dynamic kinetic resolution (see Section 1.4.1.5), the theoretical yield increases to 100%. Thus a reaction system consisting of an achiral transition-metal catalyst for racemization, a suitable enzyme, acetophenone, and an acetyl donor allows the transformation of racemic 1-phenylethanol to the R acetates with an excellent ee (Scheme 1.93) [333]. The presence of one equiv. of acetophenone is necessary to promote the alcohol racemization catalyzed by the... [Pg.80]

In practice, oxidations of this type have been observed and generally have been carried out with a substrate bearing a racemic secondary alcohol so that kinetic resolution is achieved. Although these oxidations are not strictly within the scope of this chapter, they are summarized briefly in Eqs. 6A.7-6A.9 to acquaint the reader with other potential uses for the Ti-tartrate catalytic complex. In the kinetic resolutions shown in Eqs. 6A.7 and 6A.8, the oxidations are controlled by limiting the amount of oxidant used to 0.6 equiv. Only modest resolution was attained for the acetylenic alcohol (Eq. 6A.7, 21% ee) [77] and the allenic alcohol (Eq. 6A.8, 40% ee) [77]. Resolutions of the furanols [142] or the thiophene alcohols [143] of Eq. 6A.9 generally are excellent (90-98% ee except when Rj is a I-butyl group). Only in the kinetic resolution of the furanols has the oxidation product been identified and, in that case, is a dihydropyranone. [Pg.272]

Carbon-Oxygen and Carbon-Sulfur Bonds. A report of modest enantioselectivity up to 48% ee in the 0-alkylation of racemic secondary alcohols (a kinetic resolution) in the presence of a chiral non-racemic non-functionalized quat, (S)-Et3NCH2CH(Me)Et Br, could not be repeated [80]. Such catalysts would not be capable of making the multipoint interaction between catalyst and reactants in the transition state, which are thought to govern the stereochemistry of these types of reactions. Other O-alkylations are noted [lie]. [Pg.748]

Whereas the chiral TEMPO analog 87 was used to resolve racemic secondary alcohols, the D-fructose-derived ketone 88 [137] proved useful for oxidative resolution of racemic diols (Table 10.13) [138, 139], Persulfate in the form of Oxone, Curox, etc., served as the final oxidizing agent, and the dioxirane generated from the ketone 88 is the chiral active species. Because of the relatively low conversions (except for unsubstituted dihydrobenzoin) at which the ee stated were achieved, the method currently seems to be of less practical value. Furthermore, typically 3 equiv. ketone 88 had to be employed [138, 139]. [Pg.308]

These chiral acyl donors can be used for quite effective kinetic resolution of racemic secondary alcohols. For example, enantiomeric aryl alkyl ketones are es-terified by the acyl pyridinium ion 8 with selectivity factors in the range 12-53 [10], In combination with its pseudo-enantiomer 9, parallel kinetic resolution was performed [11], Under these conditions, methyl l-(l-naphthyl)ethanol was resolved with an effective selectivity factor > 125 [12]. Unfortunately, the acyl donors 8 and 9 must be preformed, and no simple catalytic version was reported. Furthermore, over-stoichiometric quantities of either MgBr2 or ZnCI2 are required to promote acyl transfer. In 2001, Vedejs and Rozners reported a catalytic parallel kinetic resolution of secondary alcohols (Scheme 12.3) [13]. [Pg.325]

High enantiomeric excess in organocatalytic desymmetrization of meso-diols using chiral phosphines as nucleophilic catalysts was achieved for the first time by Vedejs et al. (Scheme 13.21) [36a], In this approach selectivity factors up to 5.5 were achieved when the C2-symmetric phospholane 42a was employed (application of chiral phosphines in the kinetic resolution of racemic secondary alcohols is discussed in Section 12.1). A later study compared the performance of the phos-pholanes 42b-d with that of the phosphabicyclooctanes 43a-c in the desymmetrization of meso-hydrobenzoin (Scheme 13.21) [36b], Improved enantioselectivity was observed for phospholanes 42b-d (86% for 42c) but reactions were usually slow. Currently the bicyclic compound 43a seems to be the best compromise between catalyst accessibility, reactivity, and enantioselectivity - the monobenzoate of hydrobenzoin has been obtained with a yield of 97% and up to 94% ee [36b]. [Pg.368]

The same group subsequently discovered that the loading of the chiral diamine catalyst can be reduced substantially if triethylamine is added in stoichiometric amounts as an achiral proton acceptor [37b]. As shown at the top of Scheme 13.23, as little as 0.5 mol% catalyst 45 was sufficient to achieve yields and ee comparable with the stoichiometric variant (application of the Oriyama catalysts 44 and 45 in the kinetic resolution of racemic secondary alcohols is discussed in Section 12.1). Oriyama et al. have also reported that 1,3-diols can efficiently be desymme-trized by use of catalysts 44 or 45. For best performance n-butyronitrile was used as solvent and 4-tert-butylbenzoyl chloride as acylating agent (Scheme 13.23, bottom) [38]. [Pg.369]

Fu et al. used the planar chiral DMAP derivative 46 (Scheme 13.24) [39]. Although this catalyst has been employed successfully for kinetic resolution of a large variety of racemic secondary alcohols (Section 12.1), substrate 47 seems to be the only meso-diol that has been desymmetrized by use of the acylation catalyst... [Pg.369]

Other ruthenium-based catalysts for the aerobic oxidation of alcohols have been described where it is not clear if they involve oxidative dehydrogenation by low-valent ruthenium, to give hydridoruthenium intermediates, or by high-valent oxoruthenium. Masutani et al. [107] described (nitrosyl)Ru(salen) complexes, which can be activated by illumination to release the NO ligand. These complexes demonstrated selectivity for oxidation of the alcoholic group versus epoxidation, which was regarded as evidence for the intermediacy of Ru-oxo moieties. Their excellent alcohol coordination properties led to a good enantiomer differentation in the aerobic oxidation of racemic secondary alcohols (Fig. 19) and to a selective oxidation of primary alcohols in the presence of secondary alcohols [108]. [Pg.306]

Stereogenic additions of hydride donors to achiral deuterated aldehydes R—C(=0)D or to achiral ketones R1R2C(=0) take place without stereocontrol using the reagents which you learned about in Section 8.3. Thus, racemic deuterated alcohols R—C(OH) D or racemic secondary alcohols R1R2C(OH)H are produced. The reason for this is... [Pg.323]

The kinetic resolution of racemic secondary alcohols via enantioselective benzoylation using Ph3Bi(OAc)2, CO, AgOAc, and a chiral Pd(n) catalyst has been investigated (Equation (135)).220,220a Of the chiral P- and A-ligands tested, the planar chirality of an optically active oxazolynylferrocenylphosphane has shown some positive effects on the enantioselectivity. [Pg.450]

So far, chiral imidazolium precatalysts have been used successfully for kinetic resolutions of racemic secondary alcohols via enantioselec-tive acylation (Kano et al. 2005 Suzuki et al. 2004). [Pg.189]

Figure 7.2 The structure of the faster reacting enantiomer in lipase-catalyzed esterification in kinetic resolution of racemic secondary alcohols or hydrolysis of the corresponding esters. Small and large refer to the relative size of the groups and not to the R/S notation. Figure 7.2 The structure of the faster reacting enantiomer in lipase-catalyzed esterification in kinetic resolution of racemic secondary alcohols or hydrolysis of the corresponding esters. Small and large refer to the relative size of the groups and not to the R/S notation.
Deracemization by stereoinversion is a process in which one form (S of the racemic starting material (Rf -i- Sf) is enantioselectively transformed into an intermediate (Si) which can in turn react to give the form of opposite configuration (Rf). An example of this method could be the selective oxidation of one enantiomer of a racemic secondary alcohol and the subsequent reduction with a catalyst of opposite stereopreference [2]. [Pg.195]

By means of capillary gas chromatographic determination of the optical purities of formed products we could demonstrate that yeast alcohol dehydrogenase catalyzes not only the oxidation of racemic secondary alcohols but also the reduction of the corresponding methyl ketones in highly stereoselective manner. [Pg.18]

Double Diastereoselection in the Dihydroxylation Reaction. The dihydroxylation reaction of chiral nonracemic substrates using the cinchona-derived ligand leads to a matched and mismatched pair (eq 6) Kinetic resolution of several racemic secondary alcohols has also been examined. ... [Pg.223]

Kinetic resolution involving acidolysis of esters of racemic secondary alcohols and acids or transesterification of chiral acids does not have many examples in the literature. ... [Pg.379]

Kinetic Resolution of Racemic Secondary Alcohols. Racemic cyclic and acyclic secondary alcohols and p-halohydrins are kinetically resolved in good chemical yields with modest-to-excellent enantioselectivity (eqs 2 and 3). [Pg.412]


See other pages where Racemic secondary alcohols is mentioned: [Pg.96]    [Pg.285]    [Pg.49]    [Pg.145]    [Pg.149]    [Pg.80]    [Pg.559]    [Pg.4]    [Pg.422]    [Pg.219]    [Pg.341]    [Pg.192]    [Pg.175]    [Pg.175]    [Pg.178]    [Pg.196]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



Alcohols secondary alcohol

Racemization alcohols

© 2024 chempedia.info