Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Allyl preparation

Preparation of f>/s((S)-1-acetoxy-1-((1S,2S,4S,5S)-5-(4-pentenyl)-1-azabicyclo[2.2.2]oct-2-yl)methyl)zinc by boron-zinc exchange and its copper catalysed allylation preparation of 4-((S)-1-acetoxy-1-((1S,2S,4S,5S)-5-(4-pentenyl)-1-azabicyclo[2.2.2]oct-2-yl)methyl)quinoline12... [Pg.90]

Preparation of b/s(4,4-dicarbethoxybutyl)zinc by boron-zinc exchange and its copper catalysed allylation preparation of diethyl 5-hexen-1-ylmalonate12... [Pg.91]

Table 3 lists substituted allyls prepared from organotins and -leads. [Pg.63]

Allyl Chloride. Comparatively poor yields are obtained by the zinc chloride - hydrochloric acid method, but the following procedure, which employs cuprous chloride as a catalyst, gives a yield of over 90 per cent. Place 100 ml. of allyl alcohol (Section 111,140), 150 ml. of concentrated hydrochloric acid and 2 g. of freshly prepared cuprous chloride (Section II,50,i one tenth scale) in a 750 ml. round-bottomed flask equipped with a reflux condenser. Cool the flask in ice and add 50 ml. of concen trated sulphuric acid dropwise through the condenser with frequent shaking of the flask. A little hydrogen chloride may be evolved towards the end of the reaction. Allow the turbid liquid to stand for 30 minutes in order to complete the separation of the allyl chloride. Remove the upper layer, wash it with twice its volume of water, and dry over anhydrous calcium chloride. Distil the allyl chloride passes over at 46-47°. [Pg.276]

The allyl bromide (Section 111,35) should be dried over anhydrous calcium chloride and redistilled the fraction b.p. 69-72° is collected for use in this preparation. [Pg.301]

Allyl alcohol may be prepared by heating glycerol with formic acid ... [Pg.459]

This unsaturated hydrocarbon is easily prepared by the action of sodium upon allyl iodide or bromide ... [Pg.466]

Nickel-allyl complexes prepared from Ni(CO)4 and allyl bromides are useful for the ole-fination of alkyl bromides and iodides (E.J. Corey, 1967 B A.P. Kozikowski, 1976). The reaction has also been extended to the synthesis of macrocycles (E.J. Corey, 1967 C, 1972A). [Pg.42]

Alkenes in (alkene)dicarbonyl(T -cyclopentadienyl)iron(l+) cations react with carbon nucleophiles to form new C —C bonds (M. Rosenblum, 1974 A.J. Pearson, 1987). Tricarbon-yi(ri -cycIohexadienyI)iron(l-h) cations, prepared from the T] -l,3-cyclohexadiene complexes by hydride abstraction with tritylium cations, react similarly to give 5-substituted 1,3-cyclo-hexadienes, and neutral tricarbonyl(n -l,3-cyciohexadiene)iron complexes can be coupled with olefins by hydrogen transfer at > 140°C. These reactions proceed regio- and stereospecifically in the successive cyanide addition and spirocyclization at an optically pure N-allyl-N-phenyl-1,3-cyclohexadiene-l-carboxamide iron complex (A.J. Pearson, 1989). [Pg.44]

Although Pd is cheaper than Rh and Pt, it is still expensive. In Pd(0)- or Pd(ll)-catalyzed reactions, particularly in commercial processes, repeated use of Pd catalysts is required. When the products are low-boiling, they can be separated from the catalyst by distillation. The Wacker process for the production of acetaldehyde is an example. For less volatile products, there are several approaches to the economical uses of Pd catalysts. As one method, an alkyldi-phenylphosphine 9, in which the alkyl group is a polyethylene chain, is prepared as shown. The Pd complex of this phosphine has low solubility in some organic solvents such as toluene at room temperature, and is soluble at higher temperature[28]. Pd(0)-catalyzed reactions such as an allylation reaction of nucleophiles using this complex as a catalyst proceed smoothly at higher temperatures. After the reaction, the Pd complex precipitates and is recovered when the reaction mixture is cooled. [Pg.5]

Several 1,4-dicarbonyl compounds are prepared based on this oxidation. Typically, the 1,4-diketone 10 or the 1,4-keto aldehyde 12 can be prepared by the allylation of a ketone[24] or aldehyde[61,62], followed by oxidation. The reaction is a good annulation method for cyclopentenones (11 and 13). Syntheses of pentalenene[78], laurenene[67], descarboxyquadrone[79], muscone (14 R = Me)[80]) and the coriolin intermediate 15[71] have been carried out by using allyl group as the masked methyl ketone (facing page). [Pg.24]

TT-Aliylpalladium chloride reacts with a soft carbon nucleophile such as mal-onate and acetoacetate in DMSO as a coordinating solvent, and facile carbon-carbon bond formation takes place[l2,265], This reaction constitutes the basis of both stoichiometric and catalytic 7r-allylpalladium chemistry. Depending on the way in which 7r-allylpalladium complexes are prepared, the reaction becomes stoichiometric or catalytic. Preparation of the 7r-allylpalladium complexes 298 by the oxidative addition of Pd(0) to various allylic compounds (esters, carbonates etc.), and their reactions with nucleophiles, are catalytic, because Pd(0) is regenerated after the reaction with the nucleophile, and reacts again with allylic compounds. These catalytic reactions are treated in Chapter 4, Section 2. On the other hand, the preparation of the 7r-allyl complexes 299 from alkenes requires Pd(II) salts. The subsequent reaction with the nucleophile forms Pd(0). The whole process consumes Pd(ll), and ends as a stoichiometric process, because the in situ reoxidation of Pd(0) is hardly attainable. These stoichiometric reactions are treated in this section. [Pg.61]

It is possible to prepare 1-acetoxy-4-chloro-2-alkenes from conjugated dienes with high selectivity. In the presence of stoichiometric amounts of LiOAc and LiCl, l-acetoxy-4-chloro-2-hutene (358) is obtained from butadiene[307], and cw-l-acetoxy-4-chloro-2-cyclohexene (360) is obtained from 1.3-cyclohexa-diene with 99% selectivity[308]. Neither the 1.4-dichloride nor 1.4-diacetate is formed. Good stereocontrol is also observed with acyclic diene.s[309]. The chloride and acetoxy groups have different reactivities. The Pd-catalyzed selective displacement of the chloride in 358 with diethylamine gives 359 without attacking allylic acetate, and the chloride in 360 is displaced with malonate with retention of the stereochemistry to give 361, while the uncatalyzed reaction affords the inversion product 362. [Pg.69]

Benzoic acid and naphthoic acid are formed by the oxidative carbonylation by use of Pd(OAc)2 in AcOH. t-Bu02H and allyl chloride are used as reoxidants. Addition of phenanthroline gives a favorable effect[360], Furan and thiophene are also carbonylated selectively at the 2-position[361,362]. fndole-3-carboxylic acid is prepared by the carboxylation of 1-acetylindole using Pd(OAc)2 and peroxodisulfate (Na2S208)[362aj. Benzoic acid derivatives are obtained by the reaction of benzene derivatives with sodium palladium mal-onate in refluxing AcOH[363]. [Pg.78]

Aldehydes can also be prepared by the carbonylation of aryl and alkenyl halides and triflate, and benzyl and allyl chlorides using tin hydride as a hydride source and Pd(PhjP)4 as a catalyst[377]. Hydrosilancs arc used as another hydride source[378]. The arenediazonium tetralluoroborate 515 is converted into a benzaldehyde derivative rapidly in a good yield by using Et ,SiH or PH MS as the hydride source[379]. [Pg.199]

Aryl halides react with a wide variety of aryl-, alkenyl- and alkylstan-nanes[548-550]. Coupling of an aryl tritlate with an arylstannane is a good preparative method for diaryls such as 688. The coupling of alkenylstannanes with alkenyl halides proceeds stereospecifically to give conjugated dienes 689. The allylstannane 690 is used for allylation[397,546,551-553]. Aryl and enol triflates react with organostannanes smoothly in the presence of LiCl[554]. [Pg.229]

The reaction of perfluoroalkyl iodides with alkenes affords the perfluoro-alkylated alkyl iodides 931. Q.a-Difluoro-functionalized phosphonates are prepared by the addition of the iododifluoromethylphosphonate (932) at room temperature[778], A one-electron transfer-initiated radical mechanism has been proposed for the addition reaction. Addition to alkynes affords 1-perfluoro-alkyl-2-iodoalkenes (933)[779-781]. The fluorine-containing oxirane 934 is obtained by the reaction of allyl aicohol[782]. Under a CO atmosphere, the carbocarbonylation of the alkenol 935 and the alkynol 937 takes place with perfluoroalkyl iodides to give the fluorine-containing lactones 936 and 938[783]. [Pg.264]

Simple esters cannot be allylated with allyl acetates, but the Schiff base 109 derived from o -amino acid esters such as glycine or alanine is allylated with allyl acetate. In this way. the o-allyl-a-amino acid 110 can be prepared after hydrolysis[34]. The Q-allyl-o-aminophosphonate 112 is prepared by allylation of the Schiff base 111 of diethyl aminomethylphosphonates. [35,36]. Asymmetric synthesis in this reaction using the (+ )-A, jV-dicyclohex-ylsulfamoylisobornyl alcohol ester of glycine and DIOP as a chiral ligand achieved 99% ec[72]. [Pg.306]

The allyl-substituted cyclopentadiene 122 was prepared by the reaction of cyclopentadiene anion with allylic acetates[83], Allyl chloride reacts with carbon nucleophiles without Pd catalyst, but sometimes Pd catalyst accelerates the reaction of allylic chlorides and gives higher selectivity. As an example, allylation of the anion of 6,6-dimethylfulvene 123 with allyl chloride proceeded regioselectively at the methyl group, yielding 124[84]. The uncatalyzed reaction was not selective. [Pg.308]

Diacetates of 1,4-butenediol derivatives are useful for double allylation to give cyclic compounds. l,4-Diacetoxy-2-butene (126) reacts with the cyclohexanone enamine 125 to give bicyclo[4.3.1]decenone (127) and vinylbicy-clo[3.2.1]octanone (128)[85,86]. The reaction of the 3-ketoglutarate 130 with cij-cyclopentene-3,5-diacetate (129) affords the furan derivative 131 [87]. The C- and 0-allylations of ambident lithium [(phenylsulfonyl)methylene]nitronate (132) with 129 give isoxazoline-2-oxide 133, which is converted into c -3-hydroxy-4-cyanocyclopentene (134)[S8]. Similarly, chiral m-3-amino-4-hyd-roxycyclopentene was prepared by the cyclization of yV-tosylcarbamate[89]. [Pg.308]

Allylalion of the alkoxymalonitrile 231 followed by hydrolysis affords acyl cyanide, which is converted into the amide 232. Hence the reagent 231 can be used as an acyl anion equivalent[144]. Methoxy(phenylthio)acetonitrile is allylated with allylic carbonates or vinyloxiranes. After allylation. they are converted into esters or lactones. The intramolecular version using 233 has been applied to the synthesis of the macrolide 234[37]. The /i,7-unsaturated nitrile 235 is prepared by the reaction of allylic carbonate with trimethylsilyl cyanide[145]. [Pg.321]


See other pages where Allyl preparation is mentioned: [Pg.131]    [Pg.74]    [Pg.131]    [Pg.74]    [Pg.23]    [Pg.160]    [Pg.329]    [Pg.240]    [Pg.66]    [Pg.67]    [Pg.302]    [Pg.321]    [Pg.46]    [Pg.62]    [Pg.84]    [Pg.209]    [Pg.215]    [Pg.222]    [Pg.229]    [Pg.299]    [Pg.300]    [Pg.301]    [Pg.303]    [Pg.304]    [Pg.305]    [Pg.311]    [Pg.318]   
See also in sourсe #XX -- [ Pg.152 , Pg.162 , Pg.164 , Pg.165 , Pg.166 , Pg.207 ]




SEARCH



2,3-Unsaturated allyl glycoside preparation

Allyl alcohol, preparation

Allyl alcohol, preparation properties

Allyl amines preparation

Allyl aryl ethers, preparation

Allyl bromide preparation

Allyl carbonates conjugated diene preparation

Allyl chloride enol ether preparation

Allyl chloride preparation

Allyl complexes preparation

Allyl ethers enol ether preparation

Allyl ethers preparation

Allyl ketones, preparation

Allyl phenyl ether preparation

Allylation preparation of 1,4-dicarbonyl compounds

Allylic alcohol preparation

Allylic amines preparation

Allylic bromides, improved preparation

Allylic compounds conjugated diene preparation

Allylic derivatives preparation

Allylic nitro compounds preparation

Allylic preparation

Carbohydrate allyl ether, preparation

Glycerol preparation from allyl alcohol

Halides allyl preparation

Homo-allylic alcohols preparation

Metal-allyl complexes Preparation

Oxidation reactions benzyl/allyl halide preparation

Preparation of Allyl Chloride-Sulfur Dioxide Copolymer

Preparation of Allylic Trialkylstannanes

Preparing Alkyl Halides from Alkenes Allylic Bromination

© 2024 chempedia.info