Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation shape selectivity

Keywords ZSM-5 zeolite ehemieal modiiieatioii /rora-methyl edtylbenzene alkylation shape-selective eatalysis... [Pg.271]

Shape selective catalysts, such as ZeoHtes of the H-ZSM-5 type, are capable of directing alkyl groups preferentially to the para position (18). The ratio of the catalyst to the substrate also plays a role ia controlling the regiochemistry of the alkylations. For example, selective alkylation of anilines at the para position is achieved usiag alkylatiag ageats and AlCl ia equimolar ratio (19). [Pg.552]

A modified ZSM-5 catalyst has a unique shape-selective property for producing -ethyltoluene [622-96-8] selectively by the alkylation of toluene [108-88-3] with ethylene (54). j )-Ethyltoluene is an intermediate in the production of poly -methylstyrene) [24936-41-2] (PPMS), which is reported to have... [Pg.49]

The selective alkylation of toluene with methanol to produce -xylene as a predominant isomer can be achieved over shape-selective catalysts (99—101). With a modified ZSM-5 zeoHte catalyst, more than 99% -xylene in xylene isomers can be produced at 550°C. This -xylene concentration exceeds the equiHbrium concentration of 23% (99). The selective synthesis of -xylene using relatively low cost toluene is economically attractive however, this technology was not commercialized as of 1991. [Pg.53]

Shape selective catalysis as typically demonstrated by zeolites is of great interest from scientific as well as industrial viewpoint [17], However, the application of zeolites to organic reactions in a liquid-solid system is very limited, because of insufficient acid strength and slow diffusion of reactant molecules in small pores. We reported preliminarily that the microporous Cs salts of H3PW12O40 exhibit shape selectivity in a liquid-solid system [18]. Here we studied in more detail the acidity, micropore structure and catal3rtic activity of the Cs salts and wish to report that the acidic Cs salts exhibit efficient shape selective catalysis toward decomposition of esters, dehydration of alcohol, and alkylation of aromatic compound in liquid-solid system. The results were discussed in relation to the shape selective adsorption and the acidic properties. [Pg.582]

The shape selective catalysis was examined by choosing five kinds of the reactions, Eqs. (1) - (5), that is, dehydration of 2-hexanol, decompositions of three kinds of esters and alkylation of 1,3,5-trimethylbenzene with cyclohexene. [Pg.582]

Anhydrous zinc phosphonate Zn(03PCH3) is unreactive with water but reacts with primary amines (chain length up to Cg) and ammonia to form intercalation compounds. The intercalation is shape selective as amines with branching at the a-carbon cannot coordinate to the zinc. Different structures are noted for even and odd carbon chain lengths with odd numbers of carbons in the alkyl chain forming a more efficiently packed interdigitated structure.420... [Pg.1181]

Industrial applications of zeolites cover a broad range of technological processes from oil upgrading, via petrochemical transformations up to synthesis of fine chemicals [1,2]. These processes clearly benefit from zeolite well-defined microporous structures providing a possibility of reaction control via shape selectivity [3,4] and acidity [5]. Catalytic reactions, namely transformations of aromatic hydrocarbons via alkylation, isomerization, disproportionation and transalkylation [2], are not only of industrial importance but can also be used to assess the structural features of zeolites [6] especially when combined with the investigation of their acidic properties [7]. A high diversity of zeolitic structures provides us with the opportunity to correlate the acidity, activity and selectivity of different structural types of zeolites. [Pg.273]

The alkylation of phenol investigated over H-MCM-22, H-ITQ-2 and H-MCM-36 showed that the delamelation and pillaring did not improve the catalytic activity and this was explained on the secondary processes taking place during the preparation of the corresponding materials, and which strongly affect the total acidity and the acidity on the external surface. Also, the composition of the reaction products is not influenced to a considerable extent by product shape selectivity effects. This seems to show that the tert-butylation reaction preferentially proceed at (or close to) the external surface of the zeolite layers. [Pg.359]

For the non-oxidative activation of light alkanes, the direct alkylation of toluene with ethane was chosen as an industrially relevant model reaction. The catalytic performance of ZSM-5 zeolites, which are good catalysts for this model reaction, was compared to the one of zeolite MCM-22, which is used in industry for the alkylation of aromatics with alkenes in the liquid phase. The catalytic experiments were carried out in a fixed-bed reactor and in a batch reactor. The results show that the shape-selective properties of zeolite ZSM-5 are more appropriate to favor the dehydroalkylation reaction, whereas on zeolite MCM-22 with its large cavities in the pore system and half-cavities on the external surface the thermodynamically favored side reaction with its large transition state, the disproportionation of toluene, prevails. [Pg.365]

Certain diglyceryl alkyl ethers (vide supra) that form, by self-assembly, liquid crystals have a future in nanochemistry [46, 47]. Evidently, therefore, selective catalytic synthesis of specific oligomers of glycerol in a shape selective environment (vide supra) will contribute significantly to the generation of new classes of bio-and nano-materials. [Pg.231]

There are several means to maximize the yield in the desired monoalkylation product high aromatic/alkylation agent ratio, association of a transalkylation unit to the alkylation unit, and use of a shape selective zeolite as catalyst. [Pg.240]

Several metal oxides could be used as acid catalysts, although zeolites and zeo-types are mainly preferred as an alternative to liquid acids (Figure 13.1). This is a consequence of the possibility of tuning the acidity of microporous materials as well as the shape selectivity observed with zeolites that have favored their use in new catalytic processes. However, a solid with similar or higher acid strength than 100% sulfuric acid (the so-called superacid materials) could be preferred in some processes. From these solid catalysts, nation, heteropolyoxometalates, or sulfated metal oxides have been extensively studied in the last ten years (Figure 13.2). Their so-called superacid character has favored their use in a large number of acid reactions alkane isomerization, alkylation of isobutene, or aromatic hydrocarbons with olefins, acylation, nitrations, and so forth. [Pg.253]

Reversed-phase liquid chromatography shape-recognition processes are distinctly limited to describe the enhanced separation of geometric isomers or structurally related compounds that result primarily from the differences between molecular shapes rather than from additional interactions within the stationary-phase and/or silica support. For example, residual silanol activity of the base silica on nonend-capped polymeric Cis phases was found to enhance the separation of the polar carotenoids lutein and zeaxanthin [29]. In contrast, the separations of both the nonpolar carotenoid probes (a- and P-carotene and lycopene) and the SRM 869 column test mixture on endcapped and nonendcapped polymeric Cig phases exhibited no appreciable difference in retention. The nonpolar probes are subject to shape-selective interactions with the alkyl component of the stationary-phase (irrespective of endcapping), whereas the polar carotenoids containing hydroxyl moieties are subject to an additional level of retentive interactions via H-bonding with the surface silanols. Therefore, a direct comparison between the retention behavior of nonpolar and polar carotenoid solutes of similar shape and size that vary by the addition of polar substituents (e.g., dl-trans P-carotene vs. dll-trans P-cryptoxanthin) may not always be appropriate in the context of shape selectivity. [Pg.244]

The influence of alkyl chain length on shape selectivity has been the topic of numerous investigations [98-105]. Through the use of SRM 869a test mixture, the shape... [Pg.256]

A complete review of spectroscopic methods applied to the analysis of alkyl-modified surfaces with a comprehensive list of spectroscopic indicators of alkyl chain conformational order is provided elsewhere [9] this review will focus on the application of spectroscopic and other relevant experimental techniques for the characterization of shape-selective chromatographic materials. On the whole, it has been observed experimentally that any increase in alkyl stationary-phase conformational order promotes an increase in selectivity for shape-constrained solutes in RPLC separations [9], As a complement to the wealth of spectroscopic and chromatographic data, the use of molecular simulation techniques to visualize and characterize alkyl-modified surfaces may also provide new insights into molecular-level features that control shape selectivity. A review of progress in the field of chromatographic material simulations will also be discussed. [Pg.261]

RPLC processes has been questioned [203,224]. It is important to recognize that a substitute of solvent for a larger model with a greater number of alkyl chains was deemed necessary to provide adequate resolution of local phase structural changes and thus the characterization of potentially important features within chromatographic phases that represent shape-selective materials. [Pg.282]

Analytical shape computation techniques were applied for the detection of cavities and the calculation of molecular surface properties of isolated cavity features and other ordered formations within these resultant alkyl stationary-phase simulation models [227]. Deep cavities (8-10 A wide) within the alkyl chains were identified for Cig polymeric models representing shape selective stationary phases (Figure 5.23). Similar-structure cavities with significant alkyl-chain ordered regions (>11 A) were isolated from two independent Cig models (differing in temperature,... [Pg.282]

The exact mechanism controlling shape-selective retentive processes is not fully understood, although it is clear that the pure partitioning and adsorption models cannot account for differences in retention for isomer separations or the range of selectivityobserved for columns of various surface coverages and alkyl chain lengths. [Pg.284]


See other pages where Alkylation shape selectivity is mentioned: [Pg.449]    [Pg.48]    [Pg.586]    [Pg.8]    [Pg.280]    [Pg.327]    [Pg.328]    [Pg.62]    [Pg.35]    [Pg.84]    [Pg.1032]    [Pg.249]    [Pg.252]    [Pg.238]    [Pg.243]    [Pg.243]    [Pg.244]    [Pg.245]    [Pg.251]    [Pg.251]    [Pg.252]    [Pg.252]    [Pg.253]    [Pg.253]    [Pg.255]    [Pg.256]    [Pg.257]    [Pg.270]    [Pg.280]    [Pg.283]    [Pg.285]    [Pg.286]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Alkylation selective

Alkylation selectivity

Amines, alkylation shape selectivity

Shape selection

Shape selectivity

© 2024 chempedia.info