Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene alkylation

Considerable effort has been put into minimizing the adverse effects of these olefins. It was found that alkylating propylene and pentylenes in a mixture with butylenes promoted the desired reactions and reduced the octane and acid consumption penalties. Furthermore, by optimizing temperature, isobutane-to-olefin ratio, acid strength, and other variables, the deleterious effects of propylene and pentylenes in the feed can be minimized (4, 8, 21). The decision as to how much of these olefins to include in the alkylation unit feed depends on many different factors, such as their value relative to alkylate, butylene and isobutane avails, alkylate volume and octane requirements, acid costs, etc. [Pg.146]

Dinoram. [Ceca SA] Alkyl propylene diamines chemical intermediate corrosion inhibitor emulsifier for bitumen antistripping agent for toad making. [Pg.107]

Dinoramox. [Ceca SA] Ethoxylated alkyl propylene famines dispersant, wetting agent, emulsifier, corrosion inhibitor used in detergent, paint, agric., chemical, and textile industries. [Pg.107]

Figure 8 iV-protected alkyl propylene diamine 55 used as building block in the synthesis of carbazapeptide 56 [33]. [Pg.671]

Chem. Descrip. Salt of fatty acid, polyalkylated N-alkyl propylene diamine Uses Wetting agent dispersant lubricant additive paint additive rust inhibitor fuel addifive Properties Liq. [Pg.436]

C6.C12) Alkyl carboxylic acid, trimethylolpropane triester. See Trimethylolpropane tricaprylate/tricaprate (C10-C18) alkylsulfonic acid, sodium salt. See Sodium C10-18 alkyl sulfonate C29-70 carboxylic acids. See C29-70 acid CCA Type C Wood Preservative 50-60%. See Chromate copper arsenate CCC. See Chlormequat chloride Calcium cyanamide Chlorophyllin-copper complex N-(C14-C18) and (C18-C18) unsaturated alkylpropylenediamine C14-C18 and C18-18-unsat. N-(alkyl) propylene diamine. See Tallowaminopropylamine (C18-C18) and (Cl 8) unsaturated alkylcarboxylic acid. See Palmitic/oleic acids (C18-C18) and C18 unsaturated alkyidimethylamine. See Dimethyl oleic-linolenic amine... [Pg.802]

The selected NMR spectra of these synthesized lithium alkyl ethylene dicarbonate and lithium alkyl propylene dicarbonate are shown in Fig. 5.7. [Pg.239]

Ethylene, which will also have a negative effect on acid consumption. This is a common problem with units alkylating propylene. Ask the FCCU operators to check for a low bottom temperature of their deethanizing stripping tower. [Pg.78]

Chem. Descrip. Alkyl propylene diamine elhoxylate Uses Surfactant, conveyor bell lubricant Properties Brnsh. liq. 100% act. [Pg.491]

Chem. Descrip. N-C16-22 alkyl propylene diamine Ionic Nature Cationic... [Pg.1447]

N-(C14-C18) and (C16-C18) unsaturated all lpropylenediamine C14-C18 and C16-18-unsat. N-(alkyl) propylene diamine. See Tallowaminopropylamine Cl 0-30 cholesterol/lanosterol esters... [Pg.2021]

Styrene is manufactured by alkylating benzene with ethene followed by dehydrogenation, or from petroleum reformate coproduction with propylene oxide. Styrene is used almost exclusively for the manufacture of polymers, of which the most important are polystyrene, ABS plastics and styrene-butadiene rubber. U.S. production 1980 3 megatonnes. [Pg.374]

The copolymers of ethylene and propylene (OCVP) are obtained by coordination catalysis using a derivative of vanadium and a derivative of an aluminum alkyl. Molar compositions of ethylene and propylene are usually on the order 45 and 55%. [Pg.356]

The second source of sulfonic acid uses the following reaction scheme alkylation of benzene by a propylene oligomer then sulfonation of the alkylbenzene. [Pg.360]

Liquefied gas fractions (propane, propylene, butanes, butenes) that will be able to provide feedstocks to units of MTBE, ETBE, alkylation, dimerization, polymerization after sweetening and/or selective hydrogenation. [Pg.385]

Figure 7.14a illustrates the insertion of a propylene monomer into an edge vacancy in a crystal adjacent to an alkylated titanium atom. In Fig. 7.14b a cross-sectional view of the same site shows how the preferential orientation of the coordinated monomer is dictated by constraints imposed by the protuberances on the crystal surface. [Pg.493]

The plastici2er performance of isopropylphenyl diphenyl phosphate [28108-99-8], [68937-41-7], [68782-95-6], C2 H2 04P, is close to that of tricresyl phosphate. It is made from the product of isopropylation of phenol by propylene. The phosphate is a mixture of mainly 0- and -isomers and contains a distribution of different levels of alkylation (101,102). [Pg.478]

Products do not contain 2,2,3-trimethylbutane or 2,2,3,3-tetramethylbutane, which would be expected as the primary alkylation products of direct alkylation of isobutane with propylene and isobutylene, respectively. In fact, the process iavolves alkylation of the alkenes by the carbocations produced from the isoalkanes via intermolecular hydride abstraction. [Pg.556]

Polymer-type antioxidants have been prepared by Eriedel-Crafts reaction of -cresol andp- and/or y -chloromethylstyrene in the presence of boron trifluoride-etherate (198). The oligomeric product resulting from the alkylation of phenyl-a-naphthylamine using C12—15 propylene oligomer in the presence of AlCl or activated white clays is used as an antioxidant additive for lubricating oils (199). [Pg.563]

Sulfonated styrene—divinylbensene cross-linked polymers have been appHed in many of the previously mentioned reactions and also in the acylation of thiophene with acetic anhydride and acetyl chloride (209). Resins of this type (Dowex 50, Amherljte IR-112, and Permutit Q) are particularly effective catalysts in the alkylation of phenols with olefins (such as propylene, isobutylene, diisobutylene), alkyl haUdes, and alcohols (210) (see Ion exchange). Superacids. [Pg.564]

Propylene oxide [75-56-9] is manufactured by either the chlorohydrin process or the peroxidation (coproduct) process. In the chlorohydrin process, chlorine, propylene, and water are combined to make propylene chlorohydrin, which then reacts with inorganic base to yield the oxide. The peroxidation process converts either isobutane or ethylbenzene direcdy to an alkyl hydroperoxide which then reacts with propylene to make propylene oxide, and /-butyl alcohol or methylbenzyl alcohol, respectively. Table 1 Hsts producers of propylene glycols in the United States. [Pg.365]

CycHc carbonates are made by treating 1,2-diols with dialkyl carbonates using an alkyl ammonium and tertiary amine catalyst. The combination of propylene glycol and dimethyl carbonate has been reported to result in a 98% yield of propylene carbonate (21). [Pg.366]

Diisopropjibenzenes (DIPB) are readily obtained via Eriedel-Crafts alkylation of benzene or cumene by propylene. This reaction inhquid phase has not evolved drastically since 1980 with the exception of the large variety of heterogeneous acid catalysts that are now being used, mainly zeoHtes, type HZSM-12, giving a para/meta ratio = 0.7 (4). In fact, propylene can also be replaced by isopropyl alcohol coming from the hydrogenation of acetone that... [Pg.487]

Cyclic Polyolefins (GPO) and Gycloolefin Copolymers (GOG). Japanese and European companies are developing amorphous cycHc polyolefins as substrate materials for optical data storage (213—217). The materials are based on dicyclopentadiene and/or tetracyclododecene (10), where R = H, alkyl, or COOCH. Products are formed by Ziegler-Natta polymerization with addition of ethylene or propylene (11) or so-called metathesis polymerization and hydrogenation (12), (101,216). These products may stiU contain about 10% of the dicycHc stmcture (216). [Pg.161]

The addition of an oxygen atom to an olefin to generate an epoxide is often catalyzed by soluble molybdenum complexes. The use of alkyl hydroperoxides such as tert-huty hydroperoxide leads to the efficient production of propylene oxide (qv) from propylene in the so-called Oxirane (Halcon or ARCO) process (79). [Pg.477]

AH higher a-olefins, in the presence of Ziegler-Natta catalysts, can easily copolymerise both with other a-olefins and with ethylene (51,59). In these reactions, higher a-olefins are all less reactive than ethylene and propylene (41). Their reactivities in the copolymerisation reactions depend on the sise and the branching degree of their alkyl groups (51) (see Olefin polya rs, linear low density polyethylene). [Pg.430]

Nonene, or propylene tetramer, is used to alkylate phenol, which is subsequently ethoxylated to produce nonylphenol ethoxylate, an efficient, rehable industrial surfactant. [Pg.441]

All lation. The combination of olefins with paraffins to form higher isoparaffins is termed alkylation (qv). Alkylate is a desirable blendstock because it has a relatively high octane number and serves to dilute the total aromatics content. Reduction of the olefins ia gasoline blendstocks by alkylation also reduces tail pipe emissions. In refinery practice, butylenes are routinely alkylated by reaction with isobutane to produce isobutane—octane (26). In some plants, propylene and/or pentylenes (amylenes) are also alkylated (27). [Pg.207]

Alkylate is composed of a mixture of isoparaffins whose octane numbers vary with the olefins from which they were made. Butylenes produce the highest octane numbers, propylene the lowest, and amylenes (pentylenes) the iatermediate values. AH alkylates, however, have high (>87) octane numbers that make them particularly valuable. [Pg.207]

A typical phenol plant based on the cumene hydroperoxide process can be divided into two principal areas. In the reaction area, cumene, formed by alkylation of benzene and propylene, is oxidized to form cumene hydroperoxide (CHP). The cumene hydroperoxide is concentrated and cleaved to produce phenol and acetone. By-products of the oxidation reaction are acetophenone and dimethyl benzyl alcohol (DMBA). DMBA is dehydrated in the cleavage reaction to produce alpha-methylstyrene (AMS). [Pg.288]

The most widely used process for the production of phenol is the cumene process developed and Hcensed in the United States by AHiedSignal (formerly AHied Chemical Corp.). Benzene is alkylated with propylene to produce cumene (isopropylbenzene), which is oxidized by air over a catalyst to produce cumene hydroperoxide (CHP). With acid catalysis, CHP undergoes controUed decomposition to produce phenol and acetone a-methylstyrene and acetophenone are the by-products (12) (see Cumene Phenol). Other commercial processes for making phenol include the Raschig process, using chlorobenzene as the starting material, and the toluene process, via a benzoic acid intermediate. In the United States, 35-40% of the phenol produced is used for phenoHc resins. [Pg.292]


See other pages where Propylene alkylation is mentioned: [Pg.128]    [Pg.177]    [Pg.60]    [Pg.318]    [Pg.4301]    [Pg.65]    [Pg.128]    [Pg.177]    [Pg.60]    [Pg.318]    [Pg.4301]    [Pg.65]    [Pg.365]    [Pg.393]    [Pg.289]    [Pg.818]    [Pg.175]    [Pg.476]    [Pg.403]    [Pg.512]    [Pg.432]    [Pg.441]   
See also in sourсe #XX -- [ Pg.83 ]




SEARCH



Propylene alkylates

Propylene alkyls

© 2024 chempedia.info