Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkylation commercial

In contrast to the polyacrylamide homopolymers typical of CE,Fujimoto et al. incorporated charged functionalities into the neutral polyacrylamide chains to accelerate the migration of neutral compounds through a capillary column [90]. Despite this improvement, nearly 100 min were required to effect the separation of acetone and acetophenone, making this approach impractical even with the use of high voltage. Alternatively, Tanaka et al. [86] alkylated commercial poly-allylamine with alkyl bromides, followed by a Michael reaction with... [Pg.25]

Although the preceding discussion of the sulfuric and hydrofluoric acid processes has been confined to butene alkylation, isobutane has also been alkylated commercially with other olefins. Ethylene, propylene, pentenes, and dimers of butenes have been used for this purpose. It is also possible to use these olefins for the alkylation of isopentane. Such an operation, however, has not achieved commercial acceptance because it produces an inferior alkylate with a high catalyst consumption, and because isopentane is a satisfactory aviation gasoline component in its own right. [Pg.107]

Alternatively, Tanaka et al. [17] alkylated commercial polyallylamine with Cs-Ci6 alkyl bromides, followed by a Michael reaction with methyl acrylate and subsequent hydrolysis of the methyl ester to obtain free carboxyl functionalities. Although difficult to prepare, this polymer effected efficient separations of ketones and aromatic... [Pg.198]

Alkylation of Other Aromatics. Numerous other aromatics, including toluene, xylenes, polynuclear aromatics, phenol, cresols, pjrridine, and aromatic amines, are alkylated commercially (44). The alkylation processes employed are often similar to those that are used to alkylate benzene, as described earlier. [Pg.171]

The problem is similar to the case of lubricating oils polyalkylnaphthalenes or alkyl polymethacrylates called pour point depressants have been commercialized to lower the pour point. [Pg.357]

An extension of these calculations to cationic dialkylamide salts required an even more complex model [Adolf et al. 1995]. These molecules have the general formula (CH3)2N [(CH2) iCH3][(CH2)m-iCH3]CK and the isomer with m = m = 18 is one of the main active ingredients in commercial fabric softeners. The presence of two long alkyl... [Pg.417]

Mono-alkyl ethers of ethylene glycol, ROCHjCHjOH. The mono methyl, ethyl and n-butyl ethers are inexpensive and are known as methyl cellosolve, cellosolve, and butyl cellosolve respectively. They are completely miscible with water, and are excellent solvents. The commercial products are purified by drying over anhydrous potassium carbonate or anhydrous calcium sulphate, followed by fractionation after... [Pg.170]

The alkyl- or aryl-halogenosilanes are prepared commercially by passing the vapour of an alkyl or an aryl halide over a heated intimate mixture of powdered sihcoii and either copper or silver. [Pg.1021]

The salts of monoalkyl sulphates are frequently encountered as commercial detergents (for example, dreft, gardinol and pentrone ) they are usually sodium salts, the alkyl components contain 12 or more carbon atoms, and give colloidal solutions. They are hydrol3 sed by boiling with dilute sodium hydroxide solution ... [Pg.1079]

Out first example is 2-hydroxy-2-methyl-3-octanone. 3-Octanone can be purchased, but it would be difficult to differentiate the two activated methylene groups in alkylation and oxidation reactions. Usual syntheses of acyloins are based upon addition of terminal alkynes to ketones (disconnection 1 see p. 52). For syntheses of unsymmetrical 1,2-difunctional compounds it is often advisable to look also for reactive starting materials, which do already contain the right substitution pattern. In the present case it turns out that 3-hydroxy-3-methyl-2-butanone is an inexpensive commercial product. This molecule dictates disconnection 3. Another practical synthesis starts with acetone cyanohydrin and pentylmagnesium bromide (disconnection 2). Many 1,2-difunctional compounds are accessible via oxidation of C—C multiple bonds. In this case the target molecule may be obtained by simple permanganate oxidation of 2-methyl-2-octene, which may be synthesized by Wittig reaction (disconnection 1). [Pg.201]

The 1,6-difunctional hydroxyketone given below contains an octyl chain at the keto group and two chiral centers at C-2 and C-3 (G. Magnusson, 1977). In the first step of the antithesis of this molecule it is best to disconnect the octyl chain and to transform the chiral residue into a cyclic synthon simultaneously. Since we know that ketones can be produced from add derivatives by alkylation (see p. 45ff,), an obvious precursor would be a seven-membered lactone ring, which is opened in synthesis by octyl anion at low temperature. The lactone in turn can be transformed into cis-2,3-dimethyicyclohexanone, which is available by FGI from (2,3-cis)-2,3-dimethylcyclohexanol. The latter can be separated from the commercial ds-trans mixture, e.g. by distillation or chromatography. [Pg.206]

Two synthetic bridged nitrogen heterocycles are also prepared on a commercial scale. The pentazocine synthesis consists of a reductive alkylation of a pyridinium ring, a remarkable and puzzling addition to the most hindered position, hydrogenation of an enamine, and acid-catalyzed substitution of a phenol derivative. The synthesis is an application of the reactivity rules discussed in the alkaloid section. The same applies for clidinium bromide. [Pg.309]

Although Pd is cheaper than Rh and Pt, it is still expensive. In Pd(0)- or Pd(ll)-catalyzed reactions, particularly in commercial processes, repeated use of Pd catalysts is required. When the products are low-boiling, they can be separated from the catalyst by distillation. The Wacker process for the production of acetaldehyde is an example. For less volatile products, there are several approaches to the economical uses of Pd catalysts. As one method, an alkyldi-phenylphosphine 9, in which the alkyl group is a polyethylene chain, is prepared as shown. The Pd complex of this phosphine has low solubility in some organic solvents such as toluene at room temperature, and is soluble at higher temperature[28]. Pd(0)-catalyzed reactions such as an allylation reaction of nucleophiles using this complex as a catalyst proceed smoothly at higher temperatures. After the reaction, the Pd complex precipitates and is recovered when the reaction mixture is cooled. [Pg.5]

Nitdles may be prepared by several methods (1). The first nitrile to be prepared was propionitdle, which was obtained in 1834 by distilling barium ethyl sulfate with potassium cyanide. This is a general preparation of nitriles from sulfonate salts and is referred to as the Pelou2e reaction (2). Although not commonly practiced today, dehydration of amides has been widely used to produce nitriles and was the first commercial synthesis of a nitrile. The reaction of alkyl hahdes with sodium cyanide to produce nitriles (eq. 1) also is a general reaction with wide appHcabiUty ... [Pg.217]

The amide group is readily hydrolyzed to acrylic acid, and this reaction is kinetically faster in base than in acid solutions (5,32,33). However, hydrolysis of N-alkyl derivatives proceeds at slower rates. The presence of an electron-with-drawing group on nitrogen not only facilitates hydrolysis but also affects the polymerization behavior of these derivatives (34,35). With concentrated sulfuric acid, acrylamide forms acrylamide sulfate salt, the intermediate of the former sulfuric acid process for producing acrylamide commercially. Further reaction of the salt with alcohols produces acrylate esters (5). In strongly alkaline anhydrous solutions a potassium salt can be formed by reaction with potassium / /-butoxide in tert-huty alcohol at room temperature (36). [Pg.134]

Tests in pure water, river water, and activated sludge showed that commercial ttiaryl phosphates and alkyl diphenyl phosphates undergo reasonably facile degradation by hydrolysis and biodegradation (163—165). The phosphonates can undergo biodegradation of the carbon-to-phosphoms bond by certain microorganisms (166,167). [Pg.481]

Unlike most crystalline polymers, PVDF exhibits thermodynamic compatibiUty with other polymers (133). Blends of PVDF and poly(methyl methacrylate) (PMMA) are compatible over a wide range of blend composition (134,135). SoHd-state nmr studies showed that isotactic PMMA is more miscible with PVDF than atactic and syndiotactic PMMA (136). MiscibiUty of PVDF and poly(alkyl acrylates) depends on a specific interaction between PVDF and oxygen within the acrylate and the effect of this interaction is diminished as the hydrocarbon content of the ester is increased (137). Strong dipolar interactions are important to achieve miscibility with poly(vinyhdene fluoride) (138). PVDF blends are the object of many papers and patents specific blends of PVDF and acryflc copolymers have seen large commercial use. [Pg.387]

There is a wide variety of dyes unique to the field of hair coloring. Successive N-alkylation of the nitrophenylenediamines has an additive bathochromic effect on the visible absorption to the extent that violet-blue dyes can be formed. Since the simple A/-alkyl derivatives do not have good dyeing properties, patent activity has concentrated on the superior A/-hydroxyalkyl derivatives of nitrophenylenediamines (29,30), some of which have commercial use (31). Other substituents have been used (32). A series of patents also have been issued on substituted water-soluble azo and anthraquinone dyes bearing quaternary ammonium groups (33). [Pg.456]

Alkyltin Intermedia.tes, For the most part, organotin stabilizers are produced commercially from the respective alkyl tin chloride intermediates. There are several processes used to manufacture these intermediates. The desired ratio of monoalkyl tin trichloride to dialkyltin dichloride is generally achieved by a redistribution reaction involving a second-step reaction with stannic chloride (tin(IV) chloride). By far, the most easily synthesized alkyltin chloride intermediates are the methyltin chlorides because methyl chloride reacts directiy with tin metal in the presence of a catalyst to form dimethyl tin dichloride cleanly in high yields (21). Coaddition of stannic chloride to the reactor leads directiy to almost any desired mixture of mono- and dimethyl tin chloride intermediates ... [Pg.547]

The other important direct alkylation processes involve reaction of electron-rich olefinic compounds with either tin metal or stannous chloride (tin(II) chloride) in the presence of stoichiometric amounts of hydrogen chloride (22). Butyl acrylate (R = C Hg) was used commercially in this process to prepare the estertin or P-carboalkoxyethyltin chlorides as iHustrated in the foUowing. [Pg.547]

The other commercially important routes to alkyltin chloride intermediates utilize an indirect method having a tetraalkjitin intermediate. Tetraalkyltins are made by transmetaHation of stannic chloride with a metal alkyl where the metal is typicaHy magnesium or aluminum. Subsequent redistribution reactions with additional stannic chloride yield the desired mixture of monoalkyl tin trichloride and dialkyltin dichloride. Both / -butjitin and / -octjitin intermediates are manufactured by one of these schemes. [Pg.547]

The basic metal salts and soaps tend to be less cosdy than the alkyl tin stabilizers for example, in the United States, the market price in 1993 for calcium stearate was about 1.30— 1.60, zinc stearate was 1.70— 2.00, and barium stearate was 2.40— 2.80/kg. Not all of the coadditives are necessary in every PVC compound. Typically, commercial mixed metal stabilizers contain most of the necessary coadditives and usually an epoxy compound and a phosphite are the only additional products that may be added by the processor. The requited costabilizers, however, significantly add to the stabilization costs. Typical phosphites, used in most flexible PVC formulations, are sold for 4.00— 7.50/kg. Typical antioxidants are bisphenol A, selling at 2.00/kg Nnonylphenol at 1.25/kg and BHT at 3.50/kg, respectively. Pricing for ESO is about 2.00— 2.50/kg. Polyols, such as pentaerythritol, used with the barium—cadmium systems, sells at 2.00, whereas the derivative dipentaerythritol costs over three times as much. The P-diketones and specialized dihydropyridines, which are powerful costabilizers for calcium—zinc and barium—zinc systems, are very cosdy. These additives are 10.00 and 20.00/kg, respectively, contributing significantly to the overall stabilizer costs. Hydrotalcites are sold for about 5.00— 7.00/kg. [Pg.551]


See other pages where Alkylation commercial is mentioned: [Pg.128]    [Pg.230]    [Pg.926]    [Pg.128]    [Pg.230]    [Pg.926]    [Pg.21]    [Pg.25]    [Pg.89]    [Pg.120]    [Pg.198]    [Pg.133]    [Pg.9]    [Pg.46]    [Pg.199]    [Pg.318]    [Pg.106]    [Pg.389]    [Pg.63]    [Pg.154]    [Pg.167]    [Pg.463]    [Pg.80]    [Pg.136]    [Pg.478]    [Pg.137]    [Pg.230]    [Pg.315]    [Pg.318]    [Pg.395]    [Pg.547]    [Pg.548]   
See also in sourсe #XX -- [ Pg.344 ]




SEARCH



Alkylation commercially applied

Commercial alkylation process

Reactor design, commercial alkylation

Refinery commercial alkylation processes

© 2024 chempedia.info