Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes function

FIGURE 17 11 Imine formation between the aldehyde function of 11 as retinal and an ammo group of a protein (opsin) is involved in the chemistry of vision The numbering scheme in retinal is specifically developed for carotenes and related compounds... [Pg.729]

Up to this point all our attention has been directed toward aldoses carbohydrates hav ing an aldehyde function in their open chain form Aldoses are more common than ketoses and their role m biological processes has been more thoroughly studied Nev ertheless a large number of ketoses are known and several of them are pivotal inter mediates m carbohydrate biosynthesis and metabolism Examples of some ketoses include d nbulose l xylulose and d fructose... [Pg.1041]

A characteristic property of an aldehyde function is its sensitivity to oxidation A solu tion of copper(II) sulfate as its citrate complex (Benedict s reagent) is capable of oxi dizing aliphatic aldehydes to the corresponding carboxylic acid... [Pg.1053]

Aldoses are reducing sugars because they possess an aldehyde function m then-open chain form Ketoses are also reducing sugars Under the conditions of the test ketoses equilibrate with aldoses by way of enediol intermediates and the aldoses are oxidized by the reagent... [Pg.1053]

Derivatives of aldoses in which the terminal aldehyde function is oxidized to a car boxylic acid are called aldonic acids Aldonic acids are named by replacing the ose ending of the aldose by omc acid Oxidation of aldoses with bromine is the most com monly used method for the preparation of aldonic acids and involves the furanose or pyranose form of the carbohydrate... [Pg.1054]

Uronic acids occupy an oxidation state between aldonic and aldanc acids They have an aldehyde function at one end of their carbon chain and a carboxyhc acid group at the other... [Pg.1055]

The presence of an aldehyde function m their open chain forms makes aldoses reactive toward nucleophilic addition of hydrogen cyanide Addition yields a mixture of diastereo meric cyanohydrins... [Pg.1055]

The reaction is used for the chain extension of aldoses in the synthesis of new or unusual sugars In this case the starting material l arabinose is an abundant natural product and possesses the correct configurations at its three chirality centers for elaboration to the relatively rare l enantiomers of glucose and mannose After cyanohydrin formation the cyano groups are converted to aldehyde functions by hydrogenation m aqueous solution Under these conditions —C=N is reduced to —CH=NH and hydrolyzes rapidly to —CH=0 Use of a poisoned palladium on barium sulfate catalyst prevents further reduction to the alditols... [Pg.1056]

Aldonic acid (Section 25 19) Carboxylic acid obtained by oxi dation of the aldehyde function of an aldose Aldose (Section 25 1) Carbohydrate that contains an aldehyde carbonyl group in its open chain form Alicyclic (Section 2 15) Term describing an a/iphatic cyclic structural unit... [Pg.1275]

Ketose (Section 25 1) A carbohydrate that contains a ketone carbonyl group in its open chain form Kiliam-Fischer synthesis (Section 25 20) A synthetic method for carbohydrate chain extension The new carbon-carbon bond IS formed by converting an aldose to its cyanohydnn Reduction of the cyano group to an aldehyde function com pletes the synthesis... [Pg.1287]

The common method of naming aldehydes corresponds very closely to that of the related acids (see Carboxylic acids), in that the term aldehyde is added to the base name of the acid. For example, formaldehyde (qv) comes from formic acid, acetaldehyde (qv) from acetic acid, and butyraldehyde (qv) from butyric acid. If the compound contains more than two aldehyde groups, or is cycHc, the name is formed using carbaldehyde to indicate the functionaUty. The lUPAC system of aldehyde nomenclature drops the final e from the name of the parent acycHc hydrocarbon and adds al If two aldehyde functional groups are present, the suffix -dialis used. The prefix formjlis used with polyfunctional compounds. Examples of nomenclature types are shown in Table 1. [Pg.469]

Oxidation Reactions. In general, the aldehyde function is easily oxidized to form the corresponding carboxyUc acid. [Pg.470]

Oxidation. Oxidation of hydroxybenzaldehydes can result in the formation of a variety of compounds, depending on the reagents and conditions used. Replacement of the aldehyde function by a hydroxyl group results when 2- or 4-hydroxybenzaldehydes are treated with hydrogen peroxide in acidic (42) or basic (43) media pyrocatechol or hydroquinone are obtained, respectively. [Pg.505]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

The use of an acidic solution of p-anisaldehyde in ethanol to detect aldehyde functionalities on polystyrene polymer supports has been reported (beads are treated with a freshly made solution of p-anisaldehyde (2.55 mL), ethanol (88 mL), sulfuric acid (9 mL), acetic acid (1 mL) and heated at 110°C for 4 min). The colour of the beads depends on the percentage of CHO content such that at 0% of CHO groups, the beads are colourless, -50% CHO content, the beads appear red and at 98% CHO the beads appear burgundy [Vdzquez and Albericio Tetrahedron Lett 42 6691 200]]. A different approach utilises 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (Purpald) as the visualizing agent for CHO groups. Resins containing aldehyde functionalities turn dark brown to purple after a 5 min reaction followed by a 10 minute air oxidation [Coumoyer et al. J Comb Chem 4 120 2002]. [Pg.76]

The aldehyde functionality present in 3-phenyl-2H-azirine-2-carbox-aldehyde reacts selectively with amines and with Qrignard and Wittig reagents to give a variety of substituted azirines. These azirines have been used, in turn, to prepare a wide assortment of heterocyclic rings such as oxazoles, imidazoles, pyrazoles, pyrroles, and benzazepins. ... [Pg.87]

The two methyl groups are not equivalent at 303 K (3 = 2.86 and 3.14), rotation about the CN bond is frozen, because this bond has partial tt character as a result of the mesomerlc (resonance) effects of the dimethylamino group (+Af) and of the aldehyde function (-M), so that there are cis and trans methyl groups. Hence one can regard 3-(A(A -dlmethylamlno)acrolein as a vinylogue of dlmethylformamide and formulate a vlnylogous amide resonance. [Pg.189]

Among oxygen containing groups, a higher oxidation state takes precedence over a lower one in deter-rnining the suffix of the substitutive nane. Thus, a compound that contains both an alcohol and an aldehyde function is named as an aldehyde. [Pg.704]

Because the pK s of the aldehyde and water are similar, the solution contains significant quantities of both the aldehyde and its enolate. Moreover, their reactivities are complementary. The aldehyde is capable of undergoing nucleophilic addition to its carbonyl group, and the enolate is a nucleophile capable of adding to a carbonyl group. And as shown in Figure 18.4, this is exactly what happens. The product of this step is an alkoxide, which abstracts a proton from the solvent (usually water or ethanol) to yield a (3-hydroxy aldehyde. A compound of this type is known as an aldol because it contains both an aldehyde function and a hydroxyl group (aid + ol = aldol). The reaction is called aldol addition. [Pg.769]

As shown for the aldotetroses, an aldose belongs to the d or the l series according to the configuration of the chirality center farthest removed from the aldehyde function. Individual nfflnes, such as erythrose and threose, specify the particular ariangement of chirality centers within the molecule relative to each other. Optical activities cannot be determined directly from the d and l prefixes. As it turns out, both D-erythrose and D-threose are levorotatory, but D-glyceraldehyde is dextrorotatory. [Pg.1030]

Aldonic acid (Section 25.19) Carboxylic acid obtained by oxidation of the aldehyde function of an aldose. [Pg.1275]

Reaction of tryptamine with simple ketones has not been widely explored. Acetone in the presence of benzoyl chloride has been reported to yield 2-benzoyl-1,1 -dimethyl-1,2,3,4-tetrahydro-j8-carbo-line. That the keto group is much less reactive than the aldehyde group is indicated by the fact that j8-keto aldehydes, in the form of their acetals or sodium salts, react with tryptamine at the aldehyde function to yield the conjugated enamine 24, which undergoes ring closure via an intramolecular Michael addition. The potentialities of this interesting modification of the Pictet-Spengler reaction have not yet been fuUy explored. [Pg.88]

With respect to the carbonyl substrate, a variety of additional functional groups is tolerated, e.g. ester, ether, halogen. With compounds that contain an ester as well as a keto or aldehyde function, the latter usually reacts preferentially. Due to its mild reaction conditions the Wittig reaction is an important method for the synthesis of sensitive alkenes, as for example highly unsaturated compounds like the carotinoid 17 shown above. [Pg.296]

Reduction of unsaturated aldehydes seems more influenced by the catalyst than is that of unsaturated ketones, probably because of the less hindered nature of the aldehydic function. A variety of special catalysts, such as unsupported (96), or supported (SJ) platinum-iron-zinc, plalinum-nickel-iron (47), platinum-cobalt (90), nickel-cobalt-iron (42-44), osmium (<55), rhenium heptoxide (74), or iridium-on-carbon (49), have been developed for selective hydrogenation of the carbonyl group in unsaturated aldehydes. None of these catalysts appears to reduce an a,/3-unsaturated ketonic carbonyl selectively. [Pg.71]

Aldose (Section 25.1) A carbohydrate with an aldehyde functional group. [Pg.1235]

Although intermediate 2 is terminated at both ends by electrophilic carbonyl groups, the aldehydic function at C-7 is inherently more reactive, and thus more susceptible to a nucleophilic attack, than the methoxycarbonyl group at C-l. As a result, it should be possible to selectively engage the aldehyde carbonyl of intermedi-... [Pg.230]


See other pages where Aldehydes function is mentioned: [Pg.327]    [Pg.703]    [Pg.728]    [Pg.769]    [Pg.346]    [Pg.551]    [Pg.207]    [Pg.201]    [Pg.703]    [Pg.728]    [Pg.210]    [Pg.163]    [Pg.98]    [Pg.191]    [Pg.269]   
See also in sourсe #XX -- [ Pg.618 ]




SEARCH



Aldehyde functional group

Aldehyde functional polysiloxanes

Aldehyde functional polysiloxanes synthesis

Aldehyde-functional

Aldehyde-functional

Aldehyde-functional poly

Aldehyde-functional polysiloxane

Aldehyde-functional polysiloxane synthesis

Aldehyde-functional study

Aldehyde-functionalized silanes

Aldehydes functionalization

Aldehydes functionalized

Aldehydes functionalized

Aldehydes functionalized, stereochemical course

Aldehydes or Ketones with Other Functional Groups

Aldehydes with other functional groups

Aldehydes, with functional heteroatom group

Carbonyl functional groups aldehydes

Enolate Equivalents from a-Functionalized Aldehydes

FUNCTIONAL GROUP CONTENTS Aldehydes

Functional ferrocene aldehyde

Functional groups aldehydes and ketones

Functional groups aldehydic

Functional groups, organic aldehyde

Functionalized Aldehydes and Ketones

Oxidation of Aldehydes Having Other Functionalities

Oxidation of Aldehydes to Amides, Esters and Related Functional Groups

Synthesis of Functionalized Aldehydes and Ketones

Terpene aldehydes, functional groups

Umpolung reactions, aldehyde functionalization

© 2024 chempedia.info