Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Air bubble

Problems that arise with HPLC experiments are usually associated with abnormally high or low pressures, system leaks, worn injectors parts, air bubbles, or blocked in-line filters. Sometimes these manifest themselves on the chromatogram and sometimes they do not. In the following subsections, we address some of the most common problems encountered, pinpoint possible causes, and suggest methods of solving the problems. You can also refer to the troubleshooting guide in Chapter 12 for possible solutions. [Pg.385]

A common cause of unusually high pressure is a plugged in-line filter. In-line filters are found at the very beginning of the flow line in the mobile phase reservoir, immediately before and/or after the injector, and just ahead of the column. With time, they can become plugged due to particles that are filtered out (particles can appear in the mobile phase and sample even if they were filtered ahead of time), and thus the pressure required to sustain a given flow rate can become quite high. The solution to this problem is to backflush the filters with solvent or clean them with a nitric acid solution in an ultrasonic bath. [Pg.385]

Other causes of unusually high pressure are an injector blockage, mismatched mobile and stationary phases, and a flow rate that is simply too high. An injector that is left in a position between load and inject can also cause a high pressure, since the pump is pumping but there can be no flow. [Pg.385]

A sustained flow that is accompanied by low pressure may be indicative of a leak in the system. All joints should be checked for leaks (see below). [Pg.385]

An air pocket in the pump can cause low or no pressure or flow, erratic pressure, and changes in retention time data. It may be necessary to bleed air from the pump or prime the pump according to system startup procedures. Air pockets in the column will mean decreased contact with the stationary phase and thus shorter retention times and decreased resolution. Tailing and peak splitting on the chromatogram may also occur due to air in the column. Air bubbles in the detector flow cell are usually manifested on [Pg.385]


The air-coupled ultrasonic probes are essentially built up by the piezo-composite plate and a front side matching layer, made of air bubbles filled plastic materials. By using a thermoplastic material as matrix material of the composite, the transducer can easily be shaped by heating up, forming and cooling down to realize focusing transducers. Because of the low... [Pg.841]

Consider the situation illustrated in Fig. VI-9, in which two air bubbles, formed in a liquid, are pressed against each other so that a liquid film is present between them. Relate the disjoining pressure of the film to the Laplace pressure P in the air bubbles. [Pg.251]

The basic phenomenon involved is that particles of ore are carried upward and held in the froth by virtue of their being attached to an air bubble, as illustrated in the inset to Fig. XIII-4. Consider, for example, the gravity-free situation indicated in Fig. XIII-5 for the case of a spherical particle. The particle may be entirely in phase A or entirely in phase B. Alternatively, it may be located in the interface, in which case both 7sa nnd 7sb contribute to the total surface free energy of the system. Also, however, some liquid-liquid interface has been eliminated. It may be shown (see Problem XIII-12) that if there is a finite contact angle, 0sab> the stable position of the particle is at the interface, as shown in Fig. XIII-5Z>. Actual measured detachment forces are in the range of 5 to 20 dyn [60]. [Pg.473]

The importance of the thin film between the mineral particle and the air bubble has been discussed in a review by Pugh and Manev [74]. In this paper, modem studies of thin films via SFA and interferometry are discussed. These film effects come into play in the stability of foams and froths. Johansson and Pugh have studied the stability of a froth with particles. Small (30-/ m), moderately hydrophobic 6c = 65°) quartz particles stabilized a froth, while more hydrophobic particles destabilized it and larger particles had less influence [75]. [Pg.476]

In order to carry out a distillation, the apparatus is completely assembled, the water pump turned on to its maximum capacity, and the screw clip on the capillary tube in the Claisen flask adjusted so that a gentle stream of air bubbles through the liquid (see Section 11,19 for details of the preparation of the capillary tube). The barometric pressure is read, and if the resulting vacuum deter mined from the reading on the mano meter is satisfactory (as estimated from the temperature of the tap water), the flask may be heated in an air (Fig. II,... [Pg.109]

Sometimes an air bubble enters the tube E and prevents the regular flow of liquid from B the air bubble is easily removed by shaking the rubber tube. The flask A is heated (e.g., by a ring burner) so that distillation proceeds at a rapid rate the process is a continuous one. If the liquid to be steam distilled is lighter than water, the receiver must be modified so that the aqueous liquors are drawn off from the bottom (see Continvmia Extraction of Liquids, Section H, 44). [Pg.149]

When the adsorbent has been introduced into the tube, the latter is fitted into a filter flask (see Fig. 77, 46, 2) to which a pump is attached the pump is run slowly and the column is again pressed down gently with the wooden pestle. The circumference of the upper surface is gently and uniformly tapped, especially where it is in contact with the glass surface, for about one minute air bubbles and channels are thus avoided when the solution is poured in. Some workers place a loose plug of cotton wool or a circle of filter paper at the top of the column in order to protect the solid from disturbance when the liquid is introduced. [Pg.160]

Procedure. Samples are collected in 40-mL vials with screw-caps lined with a Teflon septum. Fill the vial to overflowing, ensuring that there are no air bubbles. Add a reducing agent of ascorbic acid (25 mg/40 mL) to quench the further production of trihalomethanes, and seal the vial. Store samples at 4 °C, and analyze within 14 days. [Pg.576]

The deleterious effect of some fat substitutes has been demonstrated in cake frosting (27) the result is an unacceptable frosting, filled with air bubbles. In another example, some low fat cheeses are quite acceptable when cold, but when heated result in a product texture that changes to a sticky, gummy mass. Attempts to replace fat must be viewed as a total systems approach (28,29). It is likely that no one material will replace fats in food rather, replacement will consist of mixtures with each ingredient addressing one or more of the roles played by fats in food. [Pg.117]

Viscose Aging, Filtration, and Deaeration. After the dissolution step, the viscose cannot be spun into fibers because it contains many small air bubbles and particles. Furthermore, the degree of xanthation is too high, with too many of the xanthate groups in positions dictated by their accessibihty and not in the ideal positions for uniform dissolution. [Pg.347]

Continuous deaeration occurs when the viscose is warmed and pumped into thin films over cones in a large vacuum tank. The combination of the thinness of the Hquid film and the dismption caused by the boiling of volatile components allows the air to get out quickly. Loss of water and CS2 lower the gamma value and raise the cellulose concentration of the viscose slightly. Older systems use batch deaeration where the air bubbles have to rise through several feet of viscose before they are Hberated. [Pg.347]

The raw ROM (run of mine) ore is reduced in size from boulders of up to 100 cm in diameter to about 0.5 cm using jaw cmshers as weU as cone, gyratory, or roU-type equipment. The cmshed product is further pulverized using rod mills and ball mills, bringing particle sizes to finer than about 65 mesh (230 p.m). These size reduction (qv) procedures are collectively known as comminution processes. Their primary objective is to generate mineral grains that are discrete and Hberated from one another (11). Liberation is essential for the exploitation of individual mineral properties in the separation process. At the same time, particles at such fine sizes can be more readily buoyed to the top of the flotation ceU by air bubbles that adhere to them. [Pg.41]

Fig. 7. The concept of contact angle with a captive bubble in an aqueous medium, adhering to a hydrophobic sofld P is the three-phase contact point. Here, the vector passes through P and forms a tangent to the curved surface of the air bubble. The contact angle 0 is drawn into the Hquid. Fig. 7. The concept of contact angle with a captive bubble in an aqueous medium, adhering to a hydrophobic sofld P is the three-phase contact point. Here, the vector passes through P and forms a tangent to the curved surface of the air bubble. The contact angle 0 is drawn into the Hquid.
Doppler Flow Meters. Doppler flow meters sense the shift in apparent frequency of an ultrasonic beam as it is reflected from air bubbles or other acoustically reflective particles that ate moving in a Hquid flow. It is essential for operation that at least some particles ate present, but the concentration can be low and the particles as small as ca 40 p.m. CaUbration tends to be influenced by particle concentration because higher concentrations result in mote reflections taking place neat the wall, in the low velocity portion of the flow profile. One method used to minimize this effect is to have separate transmitting and receiving transducers focused to receive reflections from an intercept zone neat the center of the pipe. [Pg.66]

Wetox uses a single-reactor vessel that is baffled to simulate multiple stages. The design allows for higher destmction efficiency at lower power input and reduced temperature. Its commercial use has been limited to one faciHty in Canada for treatment of a complex industrial waste stream. Kenox Corp. (North York, Ontario, Canada) has developed a wet oxidation reactor design (28). The system operates at 4.1—4.7 MPa (600 to 680 psi) with air, using a static mixer to achieve good dispersion of Hquid and air bubbles. [Pg.502]


See other pages where Air bubble is mentioned: [Pg.616]    [Pg.866]    [Pg.457]    [Pg.457]    [Pg.467]    [Pg.57]    [Pg.143]    [Pg.3]    [Pg.85]    [Pg.86]    [Pg.86]    [Pg.105]    [Pg.105]    [Pg.160]    [Pg.1030]    [Pg.363]    [Pg.67]    [Pg.404]    [Pg.232]    [Pg.41]    [Pg.43]    [Pg.46]    [Pg.49]    [Pg.49]    [Pg.53]    [Pg.53]    [Pg.173]    [Pg.431]    [Pg.432]    [Pg.523]    [Pg.34]    [Pg.34]    [Pg.411]    [Pg.411]    [Pg.412]    [Pg.439]   
See also in sourсe #XX -- [ Pg.347 ]

See also in sourсe #XX -- [ Pg.471 ]

See also in sourсe #XX -- [ Pg.530 ]

See also in sourсe #XX -- [ Pg.141 ]

See also in sourсe #XX -- [ Pg.471 ]

See also in sourсe #XX -- [ Pg.106 , Pg.135 ]

See also in sourсe #XX -- [ Pg.300 ]

See also in sourсe #XX -- [ Pg.77 , Pg.169 ]

See also in sourсe #XX -- [ Pg.235 ]

See also in sourсe #XX -- [ Pg.101 , Pg.150 , Pg.214 ]




SEARCH



Air Bubbles in Liquid Columns

Air bubble stabilization (

Air-bubble films

Bubble Columns and Air-Lift Reactors

Effects of Exposure to Hydrogen Peroxide Bubbled Air, Oxygen and Nitrogen

No Glue - Air Bubbles and Voids

Small Air Bubbles as Additional Templates Combined with Micellar Templating

© 2024 chempedia.info