Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Affinity principles

A technique called on-line immunoaffinity CE has been presented (45) that was also coupled to MS. However, in this setup the affinity principle is used to extract the analyte from a complex matrix in a microchamber affinity device prior to CE separation. Therefore, it cannot be considered ACE. [Pg.355]

The biosensing devices focus mainly on affinity principles such as antibody -antigen reactions and are based on surface plasmon resonance [25], grating couplers[26] or interferometers [27]. It seems possible to get stable and highly sensitive devices based on these principles [28], and further investigations can lead to miniaturized sensor modules with reduced cost, size and complexity. [Pg.193]

The affinity principle is also utilized in the novel technique of affinity electropho-... [Pg.214]

Biosensors for inhibitor determination are based on the ability of inhibiting substances to become bound to the receptor component and decelerate the substrate conversion. Therefore, inhibitor sensors, similar to apoenzyme sensors and immunosensors, combine the affinity principle with enzymatic amplification reactions. In contrast to metabolism sensors, the binding is evaluated rather than the chemical reaction of the analyte. [Pg.260]

For the model of a network with an equal length of the network chains, the Gaussian character of segment distribution between the crosslinks, and the affinity principle (similarity of geometry changes for a network chain and for the whole sample), the entropy change of the sample under deformation is expressed by (Flory, 1950, 1953 Volkenshtcin, 1975 Bartenev and Zelenev, 1983 Khokhlov, 1985)... [Pg.390]

The chemical affinity principle, developed during the seventeenth century, derives from the alchemical concept of chemical wedding similar substances will interact so we can categorize them The real innovation at the end of 17 and during the 18 centuries was the application of that concept not only as a taxonomic principle but also for the comprehension of chemical reactivity. [Pg.3]

The column is not present. In fact, no rigid matrix is present either. There is no danger of any clogging and the affinity principle can be used right as the first step of purification shortening the time and cost of purifying the protein of interest. [Pg.402]

Many investigations in biotechnology have shown that the utilization of an interaction between specific functional groups on both the adsorber and the target molecule improves considerably the selectivity of the retention of the target substance from complex, multicomponent biological fluids (principle of affinity chromatography ). The affinity principle holds a... [Pg.99]

In an earlier section, measurements were described in which the equilibrium constant, K, for bimolecular reactions involving gas-phase ions and neutral molecules were detennined. Another method for detemiining the proton or other affinity of a molecule is the bracketing method [ ]. The principle of this approach is quite straightforward. Let us again take the case of a proton affinity detemiination as an example. In a reaction... [Pg.1358]

The problems that occur when one tries to estimate affinity in terms of component terms do not arise when perturbation methods are used with simulations in order to compute potentials of mean force or free energies for molecular transformations simulations use a simple physical force field and thereby implicitly include all component terms discussed earlier. We have used the molecular transformation approach to compute binding affinities from these first principles [14]. The basic approach had been introduced in early work, in which we studied the affinity of xenon for myoglobin [11]. The procedure was to gradually decrease the interactions between xenon atom and protein, and compute the free energy change by standard perturbation methods, cf. (10). An (issential component is to impose a restraint on the... [Pg.137]

The enhanced concentration at the surface accounts, in part, for the catalytic activity shown by many solid surfaces, and it is also the basis of the application of adsorbents for low pressure storage of permanent gases such as methane. However, most of the important applications of adsorption depend on the selectivity, ie, the difference in the affinity of the surface for different components. As a result of this selectivity, adsorption offers, at least in principle, a relatively straightforward means of purification (removal of an undesirable trace component from a fluid mixture) and a potentially useflil means of bulk separation. [Pg.251]

So far, as in Equation (3.33), the hydrolyses of ATP and other high-energy phosphates have been portrayed as simple processes. The situation in a real biological system is far more complex, owing to the operation of several ionic equilibria. First, ATP, ADP, and the other species in Table 3.3 can exist in several different ionization states that must be accounted for in any quantitative analysis. Second, phosphate compounds bind a variety of divalent and monovalent cations with substantial affinity, and the various metal complexes must also be considered in such analyses. Consideration of these special cases makes the quantitative analysis far more realistic. The importance of these multiple equilibria in group transfer reactions is illustrated for the hydrolysis of ATP, but the principles and methods presented are general and can be applied to any similar hydrolysis reaction. [Pg.77]

Most purification procedures for a particular protein are developed in an empirical manner, the overriding principle being purification of the protein to a homogeneous state with acceptable yield. Table 5.5 presents a summary of a purification scheme for a selected protein. Note that the specific activity of the protein (the enzyme xanthine dehydrogenase) in the immuno-affinity purified fraction (fraction 5) has been increased 152/0.108, or 1407 times the specific activity in the crude extract (fraction 1). Thus, xanthine dehydrogenase in fraction 5 versus fraction 1 is enriched more than 1400-fold by the purification procedure. [Pg.130]

This technique provides quantitative information about tautomeric equilibria in the gas phase. The results are often complementary to those obtained by mass spectrometry (Section VII,E). In principle, gas-phase proton affinities, as determined by ICR, should provide quantitative data on tautomeric equilibria. The problem is the need to correct the measured values for the model compounds, generally methyl derivatives, by the so-called N-, 0-, or S-methylation effect. Since the difference in stability between tautomers is generally not too large (otherwise determination of the most stable tautomer is trivial) and since the methylation effects are difficult to calculate, the result is that proton affinity measurements allow only semi-quantitative estimates of individual tautomer stabilities. This is a problem similar to but more severe than that encountered in the method using solution basicities (76AHCS1, p. 20). [Pg.52]

The coupling of supercritical fluid extraction (SEE) with gas chromatography (SEE-GC) provides an excellent example of the application of multidimensional chromatography principles to a sample preparation method. In SEE, the analytical matrix is packed into an extraction vessel and a supercritical fluid, usually carbon dioxide, is passed through it. The analyte matrix may be viewed as the stationary phase, while the supercritical fluid can be viewed as the mobile phase. In order to obtain an effective extraction, the solubility of the analyte in the supercritical fluid mobile phase must be considered, along with its affinity to the matrix stationary phase. The effluent from the extraction is then collected and transferred to a gas chromatograph. In his comprehensive text, Taylor provides an excellent description of the principles and applications of SEE (44), while Pawliszyn presents a description of the supercritical fluid as the mobile phase in his development of a kinetic model for the extraction process (45). [Pg.427]

Liquid-liquid extraction is a basic process already applied as a large-scale method. Usually, it does not require highly sophisticated devices, being very attractive for the preparative-scale separation of enantiomers. In this case, a chiral selector must be added to one of the liquid phases. This principle is common to some of the separation techniques described previously, such as CCC, CPC or supported-liquid membranes. In all of these, partition of the enantiomers of a mixture takes place thanks to their different affinity for the chiral additive in a given system of solvents. [Pg.15]

When induced in macrophages, iNOS produces large amounts of NO which represents a major cytotoxic principle of those cells. Due to its affinity to protein-bound iron, NO can inhibit a number of key enzymes that contain iron in their catalytic centers. These include ribonucleotide reductase (rate-limiting in DNA replication), iron-sulfur cluster-dependent enzymes (complex I and II) involved in mitochondrial electron transport and cis-aconitase in the citric acid cycle. In addition, higher concentrations of NO,... [Pg.863]

Schild analysis is a very powerful method to quantify the potency of a competitive antagonist and to test whether the blockade of response by a molecule is consistent with simple competitive antagonism. Devised by Arunlakshana and Schild (1959), it is based on the principle that the antagonist-induced dextral displacement of a dose-response curve is due to its potency (Keq value, affinity) and its concentration in the receptor compartment. Since the antagonism can be observed and the concentration of antagonist is known, the Keq (denoted KB for antagonist) can be calculated. Die relationship between antagonism and concentration must be log-linear with a unit slope to adhere to true competitive kinetics. [Pg.1111]

Such approximation is valid when the thickness of the polymeric layer is small compared to die thickness of die crystal, and the measured frequency change is small with respect to the resonant frequency of the unloaded crystal. Mass changes up to 0.05% of die crystal mass commonly meet this approximation. In die absence of molecular specificity, EQCM cannot be used for molecular-level characterization of surfaces. Electrochemical quartz crystal microbalance devices also hold promise for the task of affinity-based chemical sensing, as they allow simultaneous measurements of both tile mass and die current. The principles and capabilities of EQCM have been reviewed (67,68). The combination of EQCM widi scanning electrochemical microscopy has also been reported recently for studying die dissolution and etching of various thin films (69). The recent development of a multichannel quartz crystal microbalance (70), based on arrays of resonators, should further enhance die scope and power of EQCM. [Pg.54]

Other treatments " have led to scales that are based on different principles, for example, the average of the ionization potential and the electron affinity, " the average one-electron energy of valence shell electrons in ground-state free atoms, or the compactness of an atom s electron cloud.In some of these treatments electronegativities can be calculated for different valence states, for different hybridizations (e.g., sp carbon atoms are more electronegative than sp, which are still more electronegative than and even differently for primary, secondary,... [Pg.15]

The HSAB principle predicts that the equilibrium should lie to the right, because the hard acid CH3CO should have a greater affinity for the hard base RO than for the soft base RS . Indeed, thiol esters are easily cleaved by OR or hydrolyzed by... [Pg.342]


See other pages where Affinity principles is mentioned: [Pg.355]    [Pg.414]    [Pg.396]    [Pg.401]    [Pg.58]    [Pg.43]    [Pg.101]    [Pg.355]    [Pg.414]    [Pg.396]    [Pg.401]    [Pg.58]    [Pg.43]    [Pg.101]    [Pg.2814]    [Pg.40]    [Pg.133]    [Pg.586]    [Pg.174]    [Pg.191]    [Pg.179]    [Pg.48]    [Pg.173]    [Pg.350]    [Pg.2061]    [Pg.267]    [Pg.205]    [Pg.14]    [Pg.254]    [Pg.10]    [Pg.61]    [Pg.841]    [Pg.355]    [Pg.616]    [Pg.257]    [Pg.59]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



Affinity chromatography principles

Affinity membrane chromatography principle

Affinity techniques basic principles

© 2024 chempedia.info