Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption isotherm dispersions

Fig. XVII-31. (a) Nitrogen adsorption isotherms expressed as /-plots for various samples of a-FeOOH dispersed on carbon fibers, (h) Micropore size distributions as obtained by the MP method. [Reprinted with permission from K. Kaneko, Langmuir, 3, 357 (1987) (Ref. 231.) Copyright 1987, American Chemical Society.]... Fig. XVII-31. (a) Nitrogen adsorption isotherms expressed as /-plots for various samples of a-FeOOH dispersed on carbon fibers, (h) Micropore size distributions as obtained by the MP method. [Reprinted with permission from K. Kaneko, Langmuir, 3, 357 (1987) (Ref. 231.) Copyright 1987, American Chemical Society.]...
An interesting example of a large specific surface which is wholly external in nature is provided by a dispersed aerosol composed of fine particles free of cracks and fissures. As soon as the aerosol settles out, of course, its particles come into contact with one another and form aggregates but if the particles are spherical, more particularly if the material is hard, the particle-to-particle contacts will be very small in area the interparticulate junctions will then be so weak that many of them will become broken apart during mechanical handling, or be prized open by the film of adsorbate during an adsorption experiment. In favourable cases the flocculated specimen may have so open a structure that it behaves, as far as its adsorptive properties are concerned, as a completely non-porous material. Solids of this kind are of importance because of their relevance to standard adsorption isotherms (cf. Section 2.12) which play a fundamental role in procedures for the evaluation of specific surface area and pore size distribution by adsorption methods. [Pg.24]

The degree of uncertainty of 10 per cent or more, inseparable from estimates of specific surface from adsorption isotherms, even those of nitrogen, may seem disappointing. In fact, however, attainment of this level of accuracy is a notable achievement in a field where, prior to the development of the BET method, even the order of magnitude of the specific surface of highly disperse solids was in doubt. The adsorption method still provides the only means of determining the specific surface of a mass of non-... [Pg.104]

Adsorption of dispersants at the soHd—Hquid interface from solution is normally measured by changes in the concentration of the dispersant after adsorption has occurred, and plotted as an adsorption isotherm. A classification system of adsorption isotherms has been developed to identify the mechanisms that may be operating, such as monolayer vs multilayer adsorption, and chemisorption vs physical adsorption (8). For moderate to high mol wt polymeric dispersants, the low energy (equiUbrium) configurations of the adsorbed layer are typically about 3—30 nm thick. Normally, the adsorption is monolayer, since the thickness of the first layer significantly reduces attraction for a second layer, unless the polymer is very low mol wt or adsorbs by being nearly immiscible with the solvent. [Pg.148]

Adsorption. Adsorption (qv) is an effective means of lowering the concentration of dissolved organics in effluent. Activated carbon is the most widely used and effective adsorbent for dyes (4) and, it has been extensively studied in the waste treatment of the different classes of dyes, ie, acid, direct, basic, reactive, disperse, etc (5—22). Commercial activated carbon can be prepared from lignite and bituminous coal, wood, pulp mill residue, coconut shell, and blood and have a surface area ranging from 500—1400 m /g (23). The feasibiUty of adsorption on carbon for the removal of dissolved organic pollutants has been demonstrated by adsorption isotherms (24) (see Carbon, activated carbon). Several pilot-plant and commercial-scale systems using activated carbon adsorption columns have been developed (25—27). [Pg.381]

Contemporary development of chromatography theory has tended to concentrate on dispersion in electro-chromatography and the treatment of column overload in preparative columns. Under overload conditions, the adsorption isotherm of the solute with respect to the stationary phase can be grossly nonlinear. One of the prime contributors in this research has been Guiochon and his co-workers, [27-30]. The form of the isotherm must be experimentally determined and, from the equilibrium data, and by the use of appropriate computer programs, it has been shown possible to calculate the theoretical profile of an overloaded peak. [Pg.7]

Scott and Kucera [4] carried out some experiments that were designed to confirm that the two types of solute/stationary phase interaction, sorption and displacement, did, in fact, occur in chromatographic systems. They dispersed about 10 g of silica gel in a solvent mixture made up of 0.35 %w/v of ethyl acetate in n-heptane. It is seen from the adsorption isotherms shown in Figure 8 that at an ethyl acetate concentration of 0.35%w/v more than 95% of the first layer of ethyl acetate has been formed on the silica gel. In addition, at this solvent composition, very little of the second layer was formed. Consequently, this concentration was chosen to ensure that if significant amounts of ethyl acetate were displaced by the solute, it would be derived from the first layer on the silica and not the less strongly held second layer. [Pg.102]

The more dispersive solvent from an aqueous solvent mixture is adsorbed onto the surface of a reverse phase according to Langmuir equation and an example of the adsorption isotherms of the lower series of aliphatic alcohols onto the surface of a reverse phase (9) is shown in figure 9. It is seen that the alcohol with the longest chain, and thus the most dispersive in character, is avidly adsorbed onto the highly dispersive stationary phase, much like the polar ethyl acetate is adsorbed onto the highly polar surface of silica gel. It is also seen that... [Pg.77]

Knox and Piper (13) assumed that the majority of the adsorption isotherms were, indeed, Langmuir in form and then postulated that all the peaks that were mass overloaded would be approximately triangular in shape. As a consequence, Knox and Piper proposed that mass overload could be treated in a similar manner to volume overload. Whether all solute/stationary phase isotherms are Langmuir in type is a moot point and the assumption should be taken with some caution. Knox and Piper then suggested that the best compromise was to utilize about half the maximum sample volume as defined by equation (15), which would then reduce the distance between the peaks by half. They then recommended that the concentration of the solute should be increased until dispersion due to mass overload just caused the two peaks to touch. [Pg.120]

This precipitation process can be carried out rather cleverly on the surface of a reverse phase. If the protein solution is brought into contact with a reversed phase, and the protein has dispersive groups that allow dispersive interactions with the bonded phase, a layer of protein will be adsorbed onto the surface. This is similar to the adsorption of a long chain alcohol on the surface of a reverse phase according to the Langmuir Adsorption Isotherm which has been discussed in an earlier chapter. Now the surface will be covered by a relatively small amount of protein. If, however, the salt concentration is now increased, then the protein already on the surface acts as deposition or seeding sites for the rest of the protein. Removal of the reverse phase will separate the protein from the bulk matrix and the original protein can be recovered from the reverse phase by a separate procedure. [Pg.200]

Of special interest in liquid dispersions are the surface-active agents that tend to accumulate at air/ liquid, liquid/liquid, and/or solid/liquid interfaces. Surfactants can arrange themselves to form a coherent film surrounding the dispersed droplets (in emulsions) or suspended particles (in suspensions). This process is an oriented physical adsorption. Adsorption at the interface tends to increase with increasing thermodynamic activity of the surfactant in solution until a complete monolayer is formed at the interface or until the active sites are saturated with surfactant molecules. Also, a multilayer of adsorbed surfactant molecules may occur, resulting in more complex adsorption isotherms. [Pg.250]

The determination of adsorption isotherms at liquid-solid interfaces involves a mass balance on the amount of polymer added to the dispersion, which requires the separation of the liquid phase from the particle phase. Centrifugation is often used for this separation, under the assumption that the adsorption-desorption equilibrium does not change during this process. Serum replacement (6) allows the separation of the liquid phase without assumptions as to the configuration of the adsorbed polymer molecules. This method has been used to determine the adsorption isotherms of anionic and nonionic emulsifiers on various types of latex particles (7,8). This paper describes the adsorption of fully and partially hydrolyzed PVA on different-size PS latex particles. PS latex was chosen over polyvinyl acetate (PVAc) latex because of its well-characterized surface PVAc latexes will be studied later. [Pg.78]

Carbon black adsorbed OLOA 1200 very strongly, eventually picking up 5% of its weight in dispersant. The first 2% adsorbed almost instantly, but additional increments adsorbed more and more slowly (see Figure 5). Such time-dependence in adsorption of large molecules is quite common (15), but is seldom studied. The adsorption isotherms determined after 48 hours of tumbling at 25°... [Pg.336]

Before our theory was fully developed, extensive work by J. Koral in cooperation with R. Ullman (15) confirmed in detail and with considerable accuracy all previously known features. They ascertained, in addition, the particulars of the adsorption isotherms for a number of polymers and dispersed adsorbates and established the remarkable degree to which most isotherms could be approximated by 2-parameter equations, like Langmuir s isotherm for monolayers of small molecules. They found the dependence of the adsorption on MW to be weak and determined the area per adsorbed molecule. [Pg.146]

According to the equilibrium dispersive model and adsorption isotherm models the equilibrium data and isotherm model parameters can be calculated and compared with experimental data. It was found that frontal analysis is an effective technique for the study of multicomponent adsorption equilibria [92], As has been previously mentioned, pure pigments and dyes are generally not necessary, therefore, frontal analysis and preparative RP-HPLC techniques have not been frequently applied in their analysis. [Pg.38]

Using this methodology via measurement of adsorption isotherms, Guiochon and coworkers investigated site-selectively the thermodynamics of TFAE [51] and 3CPP [54] on a tBuCQD-CSP under NP conditions using the pulse method [51], the inverse method with the equilibrium-dispersive model [51, 54], and frontal analysis [54]. [Pg.45]

The amount of adsorbed chemical is controlled by both properties of the chemical and of the clay material. The clay saturating cation is a major factor affecting the adsorption of the organophosphorus pesticide. The adsorption isotherm of parathion from an aqueous solution onto montmorillonite saturated with various cations (Fig. 8.32), shows that the sorption sequence (Al > Na > Ca ) is not in agreement with any of the ionic series based on ionic properties. This shows that, in parathion-montmoriUonite interactions in aqueous suspension, such factors as clay dispersion, steric effects, and hydration shells are dominant in the sorption process. In general, organophosphorus adsorption on clays is described by the Freundhch equation, and the values for parathion sorption are 3 for Ca +-kaoUnite, 125 for Ca -montmorillonite, and 145 for Ca -attapulgite. [Pg.189]

Adsorption isotherms for AMP-QS onto kaolin, titania and calcium carbonate are shown in Figure 4. Viscosity profiles obtained when AMP is used to disperse titania and kaolin are shown in Figures 5-7. [Pg.49]

Band dispersion from sample mass overload is a direct result of the chromatographic process proceeding under conditions, where the adsorption isotherm of the solute on the stationary phase, is no longer linear. The development of an equation that describes the extent, of band spreadinn as a function of mass of sample placed on the column, is complex. This problem has been elegantly approached by 6uiochon and his co-workers (15-18) from the basis of the adsorption isotherm of the solute on the stationary phase. [Pg.261]

Coal is microporous, with certain partial molecular sieve properties. (A microporous solid herein refers to that which contains pores with diameters of a few tens of A. or less.) Micropores can be considered as entities capable of sorbing foreign molecules, and it is known that additivity of their sorption potential fields enhances the sorption owing to dispersion interactions. As the pores become progressively narrower, the vapor adsorption isotherm (Figure 1) in the initial region up to point B becomes progressively steeper (toward the... [Pg.718]

The Adsorption of Hydrolyzed Al(III). O Melia and Stumm (12) have shown that specific adsorption of hydrolyzed Fe(III) species accounts for the observed coagulation and restabilization of silica dispersions. A model was formulated on the basis of the Langmuir adsorption isotherm and was shown to explain the observations adequately. The authors derive a relationship between the surface area concentration of the dispersed phase S (in meter2/liter and the applied coagulant ion concentration Cte (in M) necessary to reach a certain fraction of surface coverage. The extent of destabilization or of restabilization can be concluded from the amount of surface coverage on the colloidal particle ... [Pg.106]


See other pages where Adsorption isotherm dispersions is mentioned: [Pg.670]    [Pg.253]    [Pg.396]    [Pg.381]    [Pg.56]    [Pg.193]    [Pg.428]    [Pg.35]    [Pg.255]    [Pg.564]    [Pg.455]    [Pg.31]    [Pg.31]    [Pg.147]    [Pg.218]    [Pg.214]    [Pg.276]    [Pg.317]    [Pg.61]    [Pg.181]    [Pg.580]    [Pg.712]    [Pg.28]    [Pg.101]    [Pg.116]   
See also in sourсe #XX -- [ Pg.336 ]




SEARCH



Adsorption dispersive

Adsorptive dispersion

Dispersion adsorption

© 2024 chempedia.info