Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water addition reaction

When polymers or other water-soluble substances are present in the sample, it is advantageous to add a small amount of chloroform to the initial reaction mixture after the subsequent addition of water, a two-phase system results which may be titrated in the usual way to a starch end point or by observing the disappearance of the iodine colour in the chloroform layer. [Pg.808]

The addition of water depresses zeroth-order rates of nitration, although the effect is very weak compared with that of nitrate ions concentrations of 6x io mol 1 of water, and 4X io mol 1 of potassium nitrate halve the rates of reaction under similar conditions. In moderate concentrations water anticatalyses nitration under zeroth-order conditions without changing the kinetic form. This effect is shown below (table 3.5) for the nitration of toluene in nitromethane. More strikingly, the addition of larger proportions of water modifies the kinetic... [Pg.42]

Conjugation of the newly formed double bond with the carbonyl group stabilizes the a p unsaturated aldehyde provides the driving force for the dehydration and controls Its regioselectivity Dehydration can be effected by heating the aldol with acid or base Normally if the a p unsaturated aldehyde is the desired product all that is done is to carry out the base catalyzed aldol addition reaction at elevated temperature Under these conditions once the aldol addition product is formed it rapidly loses water to form the a p unsaturated aldehyde... [Pg.772]

The enzyme fumarase catalyzes the stereospecific addition of water to fumarate to form L-malate. A standard solution of fumarase, with a concentration of 0.150 tM, gave a rate of reaction of 2.00 tM mim under conditions in which the concentration of the substrate was significantly greater than K. The rate of reaction for a sample, under identical conditions, was found to be 1.15 tM mimh What is the concentration of fumarase in the sample ... [Pg.662]

One type of polymerization reaction is the addition reaction in which successive repeat units add on to the chain. No other product molecules are formed, so the weight of the monomer and that of the repeat unit are identical in this case. A second category of polymerization reaction is the condensation reaction, in which one or two small molecules like water or HCl are eliminated for each chain linkage formed. In this case the molecular weight of the monomer and the... [Pg.3]

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

Addition of water or alcohols to aldehydes leads to the formation of a class of compounds known as acetals. This is an acid cataly2ed reaction... [Pg.471]

The biosynthesis process, which consists essentially of radical coupling reactions, sometimes followed by the addition of water, of primary, secondary, and phenohc hydroxyl groups to quinonemethide intermediates, leads to the formation of a three-dimensional polymer which lacks the regular and ordered repeating units found in other natural polymers such as cellulose and proteins. [Pg.137]

In the examples, a nitro group is substituted for a hydrogen atom, and water is a by-product. Nitro groups may, however, be substituted for other atoms or groups of atoms. In Victor Meyer reactions which use silver nitrite, the nitro group replaces a hahde atom, eg, I or Br. In a modification of this method, sodium nitrite dissolved in dimethyl formamide or other suitable solvent is used instead of silver nitrite (1). Nitro compounds can also be produced by addition reactions, eg, the reaction of nitric acid or nitrogen dioxide with unsaturated compounds such as olefins or acetylenes. [Pg.32]

PBTC is a water treatment chemical sold by Bayer under the trade name Bayhibit AM. The addition reactions can also be operated as a continuous process... [Pg.362]

Dicylopentadiene Resins. Dicyclopentadiene (DCPD) can be used as a reactive component in polyester resins in two distinct reactions with maleic anhydride (7). The addition reaction of maleic anhydride in the presence of an equivalent of water produces a dicyclopentadiene acid maleate that can condense with ethylene or diethylene glycol to form low molecular weight, highly reactive resins. These resins, introduced commercially in 1980, have largely displaced OfXv o-phthahc resins in marine apphcations because of beneficial shrinkage properties that reduce surface profile. The inherent low viscosity of these polymers also allows for the use of high levels of fillers, such as alumina tfihydrate, to extend the resin-enhancing, fiame-retardant properties for apphcation in bathtub products (Table 4). [Pg.316]

Although examples in the Kureha patent Hterature indicate latitude in selecting hold times for the low and high temperature polymerization periods, the highest molecular weight polymers seem to be obtained for long polymerization times. The addition of water to PPS polymerizations has been reported to effect polymer stabilization (49), to improve molecular weight (50,51), to cause or enhance the formation of a second Hquid phase in the reaction mixture (52), and to help reprecipitate PPS from NMP solution (51). It has also been reported that water can be added under pressure in the form of steam (53). [Pg.444]

Quinone Methides. The reaction between aldehydes and alkylphenols can also be base-cataly2ed. Under mild conditions, 2,6-DTBP reacts with formaldehyde in the presence of a base to produce the methylol derivative (22) which reacts further with base to eliminate a molecule of water and form a reactive intermediate, the quinone methide (23). Quinone methides undergo a broad array of transformations by way of addition reactions. These molecules ate conjugated homologues of vinyl ketones, but are more reactive because of the driving force associated with rearomatization after addition. An example of this type of addition is between the quinone methide and methanol to produce the substituted ben2yl methyl ether (24). [Pg.61]

The hydration of nitriles has been used to synthesize amides, for example, by treating stearonittile in ether with dry hydrochloric acid followed by the addition of water to give a 73—94% yield of stearamide or its hydrochloride (25). The long reaction time at 0°C and the use of ether make this route of tittle commercial value. [Pg.184]

Reactions of Vinyl Ethers. Vinyl ethers undergo the typical reactions of activated carbon—carbon double bonds. A key reaction of VEs is acid-catalyzed hydrolysis to the corresponding alcohol and acetaldehyde, ie, addition of water followed by decomposition of the hemiacetal. Eor example, for MVE, the reaction is... [Pg.514]

Separation and Purification of Isomers. 1-Butene and isobutylene caimot be economically separated into pure components by conventional distHlation because they are close boiling isomers (see Table 1 and Eig. 1). 2-Butene can be separated from the other two isomers by simple distHlation. There are four types of separation methods avaHable (/) selective removal of isobutylene by polymeriza tion and separation of 1-butene (2) use of addition reactions with alcohol, acids, or water to selectively produce pure isobutylene and 1-butene (3) selective extraction of isobutylene with a Hquid solvent, usuaHy an acid and (4) physical separation of isobutylene from 1-butene by absorbents. The first two methods take advantage of the reactivity of isobutylene. Eor example, isobutylene reacts about 1000 times faster than 1-butene. Some 1-butene also reacts and gets separated with isobutylene, but recovery of high purity is possible. The choice of a particular method depends on the product slate requirements of the manufacturer. In any case, 2-butene is first separated from the other two isomers by simple distHlation. [Pg.368]

The acetylation reaction is stopped by the addition of water to destroy the excess anhydride, causing rapid hydrolysis of the combined sulfate acid ester (Eig. 7). This is followed by a much slower rate of hydrolysis of the acetyl ester groups. The rate of hydrolysis is controlled by temperature, catalyst concentration, and, to a lesser extent, by the amount of water. Higher temperatures and catalyst concentrations increase the rate of hydrolysis. Higher water content slightly iacreases the hydrolysis rate and helps minimize degradation (85). The amount of water also influences the ratio of primary to secondary... [Pg.253]

In equation 1, the Grignard reagent, C H MgBr, plays a dual role as reducing agent and the source of the arene compound (see Grignard reaction). The Cr(CO)g is recovered from an apparent phenyl chromium intermediate by the addition of water (19,20). Other routes to chromium hexacarbonyl are possible, and an excellent summary of chromium carbonyl and derivatives can be found in reference 2. The only access to the less stable Cr(—II) and Cr(—I) oxidation states is by reduction of Cr(CO)g. [Pg.134]

These effects can be attributed mainly to the inductive nature of the chlorine atoms, which reduces the electron density at position 4 and increases polarization of the 3,4-double bond. The dual reactivity of the chloropteridines has been further confirmed by the preparation of new adducts and substitution products. The addition reaction competes successfully, in a preparative sense, with the substitution reaction, if the latter is slowed down by a low temperature and a non-polar solvent. Compounds (12) and (13) react with dry ammonia in benzene at 5 °C to yield the 3,4-adducts (IS), which were shown by IR spectroscopy to contain little or none of the corresponding substitution product. The adducts decompose slowly in air and almost instantaneously in water or ethanol to give the original chloropteridine and ammonia. Certain other amines behave similarly, forming adducts which can be stored for a few days at -20 °C. Treatment of (12) and (13) in acetone with hydrogen sulfide or toluene-a-thiol gives adducts of the same type. [Pg.267]

The action of sulfur nucleophiles like sodium bisulfite and thiophenols causes even pteridines that are unreactive towards water or alcohols to undergo covalent addition reactions. Thus, pteridin-7-one smoothly adds the named S-nucleophiles in a 1 1 ratio to C-6 (65JCS6930). Similarly, pteridin-4-one (73) yields adducts (74) in a 2 1 ratio at C-6 and C-7 exclusively (equation 14), as do 4-aminopteridine and lumazine with sodium bisulfite. Xanthopterin forms a 7,8-adduct and 7,8-dihydropterin can easily be converted to sodium 5,6,7,8-tetrahydropterin-6-sulfonate (66JCS(C)285), which leads to pterin-6-sulfonic acid on oxidation (59HCA1854). [Pg.287]

In one process the naphtha fraction boiling between 160 and 180°C is washed with caustic soda to remove the acids and then with suilphuric acid to remove basic constituents such as pyridine and quinoline. The naphtha is then frozen to remove naphthalene, and agitated with sulphuric acid, then with caustic soda and finally with water. Concentrated sulphuric acid is then run into the purified naphtha at a temperature below 0°C. The reaction is stopped by addition of water after 5-10 minutes, any sediment is removed, and the solution is neutralised and then washed with water. Residual naphtha is distilled off under vacuum, leaving behind the resin, which is run into trays for cooling. [Pg.471]

In practice, for fluids of viscosities below 1000 centistokes, the equilibration reaction will take a number of hours at 100-150°C. Residual esters and siliconates which may occur during the reaction are hydrolysed by addition of water and the oil is separated from the aqueous acid layer and neutralised as before. [Pg.824]

A mixture of 300 ml. of water, 150 ml. of concentrated nitric acid, and 0.2 g. of sodium nitrite (Note 2) is placed in a 2-1. threenecked flask equipped with a stirrer and a thermometer. The stirred mixture is warmed to 45°, and 2 g. of l,2,4-triazole-3(5)-thiol is added. When oxidation starts, as indicated by the evolution of brown fumes of nitrogen dioxide and a rise in temperature, a bath of cold water is placed under the reaction flask to provide cooling and an additional 99 g. (total, 101 g. 1 mole) of 1,2,4-triazole-3(5)-thiol is added in small portions over the course of 30-60 minutes. The rate of addition and the extent of cooling by the water bath are so regulated as to keep the temperature close to 45 7° all during the addition. The water bath is kept cold by the occasional addition of ice. [Pg.100]

The formation of alcohols by acid-catalyzed addition of water to alkenes is a fundamental organic reaction. At the most rudimentary mechanistic level, it can be viewed as involving a carbocation intermediate. The alkene is protonated, and the carbocation is then captured by water. [Pg.358]

The best characterized of these reactions involve the mercuric ion, Hg ", as the cation. The same process occurs for other transition-metal cations, especially Pd, but the products often go on to react fiirther. Synthetically important reactions involving Pd will be discussed in Section 8.2 of Part B. The mercuration products are stable, and this allows a relatively uncomplicated study of the addition reaction itself The usual nucleophile is the solvent, either water or an alcohol. The tenn oxymercuration is used to refer to reactions in... [Pg.369]


See other pages where Water addition reaction is mentioned: [Pg.293]    [Pg.253]    [Pg.880]    [Pg.46]    [Pg.49]    [Pg.140]    [Pg.178]    [Pg.217]    [Pg.25]    [Pg.35]    [Pg.233]    [Pg.413]    [Pg.508]    [Pg.380]    [Pg.52]    [Pg.489]    [Pg.22]    [Pg.24]    [Pg.86]    [Pg.200]    [Pg.575]    [Pg.342]    [Pg.346]    [Pg.286]    [Pg.226]    [Pg.360]   
See also in sourсe #XX -- [ Pg.271 , Pg.272 , Pg.273 , Pg.274 , Pg.275 , Pg.276 , Pg.277 , Pg.278 ]




SEARCH



Addition water

© 2024 chempedia.info