Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrolein, addition

Since the principal hazard of contamination of acrolein is base-catalyzed polymerization, a "buffer" solution to shortstop such a polymerization is often employed for emergency addition to a reacting tank. A typical composition of this solution is 78% acetic acid, 15% water, and 7% hydroquinone. The acetic acid is the primary active ingredient. Water is added to depress the freezing point and to increase the solubiUty of hydroquinone. Hydroquinone (HQ) prevents free-radical polymerization. Such polymerization is not expected to be a safety hazard, but there is no reason to exclude HQ from the formulation. Sodium acetate may be included as well to stop polymerization by very strong acids. There is, however, a temperature rise when it is added to acrolein due to catalysis of the acetic acid-acrolein addition reaction. [Pg.129]

Therefore, a small shift In the chromatograms after the acrolein addition can be observed. [Pg.309]

Conducting the same experiment using tril-inolein produced volatiles unique to the trili-nolein substrate, with the major classes being alkanals, 2-alkenals, 2,4-alkadienals, and hydrocarbons. Those volatiles, produced uniquely from this substrate and attributable to the breakdown of 9- and 13-hydroperoxides, include pentane, pentanal, 1 -pentanol, hexanal, 2-hexenal, 3-hexenal, 2-heptenal, 2-octenal, 2,4-decadienal, and acrolein. Addition of triolein afforded the added production of volatiles previously identified in triolein alone, but ad-... [Pg.536]

Addition of nucleophiles to both activated and unactivated alkenes is catalyzed by Pd(II). Addition of alcohols or AcOH to alkenes bearing EWGs is catalyzed by PdCl2(PhCN)2 to give the corresponding ethers and esters. The addition of an alcohol to the cyclic acetal of acrolein 82 to give the ether 83 is also possible with the same catalyst[64]. Amines add to the vinylic ether 84 to give 85, but not to simple alkenes[65]. [Pg.523]

Acrolein (H2C=CHCH=0) undergoes conjugate addition with sodium azide in aqueous solution to give N3CH2CH2CH=0 Propanal is not an a 3 unsaturated carbonyl compound and cannot undergo conjugate addition... [Pg.1234]

Today the most efficient catalysts are complex mixed metal oxides that consist of Bi, Mo, Fe, Ni, and/or Co, K, and either P, B, W, or Sb. Many additional combinations of metals have been patented, along with specific catalyst preparation methods. Most catalysts used commercially today are extmded neat metal oxides as opposed to supported impregnated metal oxides. Propylene conversions are generally better than 93%. Acrolein selectivities of 80 to 90% are typical. [Pg.123]

Reactions with Alcohols. The addition of alcohols to acrolein may be catalyzed by acids or bases. By the judicious choice of reaction conditions the regioselectivity of the addition maybe controlled and alkoxy propionaldehydes, acrolein acetals, or alkoxypropionaldehyde acetals produced in high yields (66). [Pg.124]

Addition of Mercaptans. One of the largest uses of acrolein is the production of 3-methylmercaptopropionaldehyde [3268-49-3] which is an intermediate in the synthesis of Dj.-methionine [59-51-8] an important chicken feed supplement. [Pg.126]

Table 8. Alkylmercaptopropionaldehydes from Addition of Mercaptans to the Acrolein Double Bond... Table 8. Alkylmercaptopropionaldehydes from Addition of Mercaptans to the Acrolein Double Bond...
Acrolein at a concentration of <500 ppm is also used to protect Hquid fuels against microorganisms. The dialkyl acetals of acrolein are also useful in this apphcation. In addition, the growth of algae, aquatic weeds, and moUusks in recirculating process water systems is also controlled by acrolein. [Pg.128]

Miscellaneous, New, and Developmental Antimicrobial Agents. Table 11 shows some of the antimicrobials that do not neady fit into the principal families. Acrolein (qv) is a unique chemical used for secondary oil recovery (43). Biobor has become the antimicrobial addition of choice for aviation fuels (44). Cbloropbtbalonil (tetrachloroisophthalnitrile [1897-45-6]) is a significant agricultural fungicide, in addition to being one of the most important latex paint film preservatives (producer, ISK). [Pg.100]

Also, Michael addition reactions occur between Ai-acylaminomalonic acid esters and unsaturated compounds, ie, acrolein [107-02-8] acrylonitrile [107-13-1y, acryhc acid esters, and amino acids result from hydrolysis of the addition products. [Pg.277]

Ca.ta.lysts, A small amount of quinoline promotes the formation of rigid foams (qv) from diols and unsaturated dicarboxyhc acids (100). Acrolein and methacrolein 1,4-addition polymerisation is catalysed by lithium complexes of quinoline (101). Organic bases, including quinoline, promote the dehydrogenation of unbranched alkanes to unbranched alkenes using platinum on sodium mordenite (102). The peracetic acid epoxidation of a wide range of alkenes is catalysed by 8-hydroxyquinoline (103). Hydroformylation catalysts have been improved using 2-quinolone [59-31-4] (104) (see Catalysis). [Pg.394]

Poly(vinyl alcohol) undergoes Michaels addition with compounds containing activated double bonds, including acrylonitrile (145—150), acrylamide (151—153), A/-methylolacrylamide (154—156), methyl vinyl ketone (157,158), acrolein (157), and sodium 2-acrylamido-2-methylpropanesulfonate (159). The reactions have been carried out under conditions spanning from homogeneous reactions in solvent to heterogeneous reactions occurring in the swollen powder or fiber. [Pg.481]

Efficiency means component 1 made per component 3 converted, all in molar units. Data show that 89.7% of the converted propylene was accounted for by the formed acrolein. An additional 9.8% efficiency is indicated for acrylic acid. Efficiency to total useftil product was 99.5% as long as ignition of homogeneous reaction could be avoided... [Pg.126]

The simple addition of acrolein to enamines derived from aldehydes to give substituted glutardialdehydes has also been observed (54). [Pg.127]

Read ions of Heterocyclic Enamines with a,p-Unsaturated Compounds Enamines react readily with compounds containing a double bone activated by electronegative groups. Addition of acrolein to 1-methyl-2 ethylidenepyrrolidine, followed by dehydrogenation, leads to 1,7-dimethyl indole (133) (Scheme 9) (215). [Pg.282]

From the addition reaetions of acrolein- to aldehyde-derived enamines, aminotetrahydropyrans have been obtained. On heating, these products rearranged to enaminoaldehydes in examples where the initial enamine was disubstituted (320,321). The addition of acrolein to ketone derived enamines has been applied to syntheses of heterocyclic and bridged bieyclic compounds (301,321-323). [Pg.365]

V,7V-dimethylaminopyridme provides l-(2-methoxycarbonyl)ethoxy- (40,69%) and l-(2-methoxycarbonyl-l-methyl)ethoxytryptamine (41, 72%), respectively (Scheme 4). The conjugate addition to mesityl oxide proceeds successfully as well, giving iVb-acetyl-1-(1, l-dimethyl-3-oxo)butoxytryptamine (42,49%), while the reaction with methyl 3-methylcrotonate affords 43 in a miserable yield (1.6%). Addition to acrolein results in failure, and 44 is not yet obtained. [Pg.110]

The ratio of the two diastereomeric products 190 and 191 was found to depend on the reaction temperature and reaction time. The addition of acrolein or methyl vinyl ketone proceeded smoothly, but in the case of methylacrylate or acrylonitrile the reaction did not proceed under the same conditions (EtsN THF 30°C). An accompanying AMI calculation of these Q ,/3-unsaturated compounds [LUMOs for acrolein, -0.13877 for methyl vinyl ketone, -0.06805 (s-trans) for methyl acrylate, -0.01413 (s-tmns) for acrylonitrile, 0.04971] suggested the low reactivity of methyl acrylate and acrylonitrile toward the Michael reaction (99H1321). [Pg.140]

Both experimental [7] and theoretical [8] investigations have shown that the anti complexes of acrolein and boranes are the most stable and the transition states were located only for these four anti complexes. The most stable transition-state structure was calculated (RHF/3-21G) to be NC, while XT is the least stable of the four located. The activation energy has been calculated to be 21.6 kcal mol for the catalyzed reaction, which is substantially above the experimental value of 10.4 1.9 kcal mol for the AlCl3-catalyzed addition of methyl acrylate to butadiene [4a]. The transition-state structure NC is shown in Fig. 8.5. [Pg.306]

The formation of the quinoline is formulated to involve a conjugate addition of the primary aromatic amine to the acrolein 6, to give a /3-arylaminoaldehyde 3 as an intermediate ... [Pg.261]

Villsmeier reaction on the dimethylacetal of methoxyacetaldehyde (141) with phosgene and dimethyIformamide affords the acrolein derivative, 142. Condensation of this with guanidine gives the pyrimidine, 143. (The enamine can be viewed as a latent aldehyde-the dimethylamino group is probably lost in the course of an addition elimination reaction with one of the guanidine groups.) This pyrimidine serves as starting material for sulfameter (111). ... [Pg.129]

A dicarbocyanine dye, dithiazinine (79), is used as a broad-spectrum anthelmentic agent, although, interestingly, it seems to have been prepared initially for use in photographic emulsions. It is made by heating 2-methylbenzothiazole ethiodide (77) with the malondialdehyde equivalent, B(ethylmercapto)-acrolein diethylacetal (78) in the presence of pyridine. There apparently ensues a sequence of addition-elimination reactions quenching the reaction mixture with potassium iodide solution results in separation of green crystals of dithiazanine iodide (79). ... [Pg.327]


See other pages where Acrolein, addition is mentioned: [Pg.313]    [Pg.279]    [Pg.313]    [Pg.279]    [Pg.79]    [Pg.129]    [Pg.154]    [Pg.320]    [Pg.453]    [Pg.390]    [Pg.419]    [Pg.318]    [Pg.226]    [Pg.129]    [Pg.349]    [Pg.95]    [Pg.47]    [Pg.147]   
See also in sourсe #XX -- [ Pg.347 ]




SEARCH



Acrolein

Acroleine

© 2024 chempedia.info