Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile propene ammoxidation

A commercial iron-promoted catalyst (Sn/Sb/Fe = 1/4/0.25) was studied by Germain et al. [92,93,135,137]. Iron is reported to improve the ammoxidation qualities of the catalyst although it has no effect on the oxidation [93], The kinetics, determined in a flow reactor at 445°C and with a feed ratio C3H6/NH3/air = 1/1.2/10, are essentially similar for this catalyst and bismuth molybdate. The initial selectivity is 80% and the maximum yield is 65% (at 445°C). The initial selectivity markedly depends on the temperature (e.g. 91% at 415°C and 72% at 507°C). The effect of water is hardly significant for this catalyst the acrylonitrile formation is slightly inhibited, while some more acrolein is formed. Presumably, water and ammonia compete in the interaction with the catalyst, which is much less reactive with respect to ammonia than bismuth molybdate. The acrolein ammoxidation is very rapid (about six times the propene ammoxidation rate) and selective (86%). A comparison of the Sn—Sb—Fe—O catalyst with bismuth molybdate is presented in Table 14. [Pg.171]

The selectivity of the acrylonitrile formation with respect to ammonia is very low (<10%) for the molybdenum-based catalysts (mainly due to N2 formation) but very high (100%) for the Sn—Sb—(Fe) catalyst. This is in agreement with the results of the separate oxidation of ammonia, which only in the case of Sn—Sb—(Fe) demands a temperature above that of the propene ammoxidation. [Pg.172]

Chapter 11 Acrylonitrile by Ammoxidation of Propene illustrates the synthesis of a flowsheet in which a difficult separation problem dominates. In addition, large energy consumption of both low- and high-temperature utilities is required. Various separation methods are involved from simple flash and gas absorption to extractive distillation for splitting azeotropic mixtures. The problem is tackled by an accurate thermodynamic analysis. Important energy saving can be detected. [Pg.531]

Figure 20.3 Schematic flow sheet of the SOHIO process of propene ammoxidation to acrylonitrile. Adapted from [11]. Figure 20.3 Schematic flow sheet of the SOHIO process of propene ammoxidation to acrylonitrile. Adapted from [11].
CoUeuille and coworkers [122] investigated catalysts for butadiene ammoxidation which are similar to those also studied in the ammoxidation of benzene (see below). Table 20.5 summarizes the results reported. The main products were fumaronitrile and maleonitrile, cro to nitrile (the unsaturated mononitrile, 1-cyano-propene, with the two trans and cis isomers) and CO with traces of acrylonitrile and furan. The residence time used was very low in this case the best performance was obtained with a typical propene ammoxidation catalyst, made of Bi/Mo/P/O under conditions of low butadiene conversion. [Pg.800]

Catalytic vapor-phase ammoxidation on mixed oxides is an important class of industrial processes. Propene ammoxidation to acrylonitrile is a well established process for the synthesis of this widely used monomer and intermediate. Over the 40 years since its commercial introduction, the yield to acrylonitrile has nearly doubled to over 80% with the fourth generation of catalysts. This is due to the intensive research effort and understanding of the several factors underpinning catalytic activity. Commercial catalysts contain over 20 elements, the presence of all of which is necessary to optimize the catalytic behavior. [Pg.810]

This coherent reaction network clearly demonstrates the in ortance of the 30-40 kJ mole selectivity limit. When it is exceeded, as is the case with propane oxidation to acrolein, selectivity declines drastically. Similarly the accnmmulated data for propane and propene ammoxidation [27,28] to acrylonitrile indicate selectivities at 30% conversion of 50% and 85% respectively. These data are consistent with the 41 kJ mole difference in bond enthalpies shown in scheme 2 for propane and propene. [Pg.1102]

Heterogeneous catalytic oxidation is a well studied and industrially useful process. Industrial catalytic oxidation of vapors and gases is a very broad field and is dealt with in several texts and review articles. Catalytic oxidation, both partial and complete, is an important process for such reactions as the partial oxidation of ethene and propene, ammoxidation of propene to acrylonitrile, maleic anhydride production, production of sulfuric acid, and oxidation of hydrocarbons in automotive exhaust catalysts. By far, the majority of oxidation catalysts and catalytic oxidation processes have been developed for these industrially important partially oxidized products. However, there are important differences between the commercial processes and the complete catalytic oxidation of VOCs at trace concentrations in air. For instance, in partial oxidation, complete oxidation to CO2 and H2O is an undesirable reaction occurring in parallel or in series to the one of interest. Other differences include the reactant concentration and temperature, the type of catalyst used, and the chemical nature of the oxidizable compound. Approximate ranges of the major independent variables of interest in this review are shown in Table 1. [Pg.158]

Hexamethylenediamine (HMDA), a monomer for the synthesis of polyamide-6,6, is produced by catalytic hydrogenation of adiponitrile. Three processes, each based on a different reactant, produce the latter coimnercially. The original Du Pont process, still used in a few plants, starts with adipic acid made from cyclohexane adipic acid then reacts with ammonia to yield the dinitrile. This process has been replaced in many plants by the catalytic hydrocyanation of butadiene. A third route to adiponitrile is the electrolytic dimerization of acrylonitrile, the latter produced by the ammoxidation of propene. [Pg.357]

The catalytic behavior of Fe-MTW zeolites in the direct ammoxidation of propane was investigated. The obtained catalytic results are compared with behavior of Fe-silicalite catalysts whose activity in propane ammoxidation was recently published. It was found that Fe-MTW catalysts exhibit the similar activity as Fe-silicalites but the selectivity to acrylonitrile was substantially lower. On the other hand, Fe-MTW catalysts produce higher amount of propene and have better acrylonitrile-to-acetonitrile ratio. [Pg.397]

In the direct ammoxidation of propane over Fe-zeolite catalysts the product mixture consisted of propene, acrylonitrile (AN), acetonitrile (AcN), and carbon oxides. Traces of methane, ethane, ethene and HCN were also detected with selectivity not exceeding 3%. The catalytic performances of the investigated catalysts are summarized in the Table 1. It must be noted that catalytic activity of MTW and silicalite matrix without iron (Fe concentration is lower than 50 ppm) was negligible. The propane conversion was below 1.5 % and no nitriles were detected. It is clearly seen from the Table 1 that the activity and selectivity of catalysts are influenced not only by the content of iron, but also by the zeolite framework structure. Typically, the Fe-MTW zeolites exhibit higher selectivity to propene (even at higher propane conversion than in the case of Fe-silicalite) and substantially lower selectivity to nitriles (both acrylonitrile and acetonitrile). The Fe-silicalite catalyst exhibits acrylonitrile selectivity 31.5 %, whereas the Fe-MTW catalysts with Fe concentration 1400 and 18900 ppm exhibit, at similar propane conversion, the AN selectivity 19.2 and 15.2 %, respectively. On the other hand, Fe-MTW zeolites exhibit higher AN/AcN ratio in comparison with Fe-silicalite catalyst (see Table 1). Fe-MTW-11500 catalyst reveals rather rare behavior. The concentration of Fe ions in the sample is comparable to Fe-sil-12900 catalyst, as well as... [Pg.399]

Most industrially desirahle oxidation processes target products of partial, not total oxidation. Well-investigated examples are the oxidation of propane or propene to acrolein, hutane to maleic acid anhydride, benzene to phenol, or the ammoxidation of propene to acrylonitrile. The mechanism of many reactions of this type is adequately described in terms of the Mars and van Krevelen modeE A molecule is chemisorbed at the surface of the oxide and reacts with one or more oxygen ions, lowering the electrochemical oxidation state of the metal ions in the process. After desorption of the product, the oxide reacts with O2, re-oxidizing the metal ions to their original oxidation state. The selectivity of the process is determined by the relative chances of... [Pg.147]

Hur et al. (252,277,278) reported the use of alkali metal-doped MgO to catalyze the synthesis of acrylonitrile and propionitrile (278). Acrylonitrile is an important chemical, especially in the polymer industry it is generally synthesized by the ammoxidation of propene catalyzed by multicomponent bismuth molybdates (279). An alternative method of synthesis of acrylonitrile is the reaction between methanol and acetonitrile (Scheme 42). [Pg.286]

Propene is used as a starting material for numerous other compounds. Chief among these are isopropyl alcohol, acrylonitrile, and propylene oxide. Isopropyl alcohol results from the hydration of propylene during cracking and is the primary chemical derived from propylene. Isopropyl alcohol is used as a solvent, antifreeze, and as rubbing alcohol, but its major use is for the production of acetone. Acrylonitrile is used primarily as a monomer in the production of acrylic fibers. Polymerized acrylonitrile fibers are produced under the trade names such as Orion (DuPont) and Acrilan (Monsanto). Acrylonitrile is also a reactant in the synthesis of dyes, pharmaceuticals, synthetic rubber, and resins. Acrylonitrile production occurs primarily through ammoxidation of propylene CH3- CH = CH2 + NH3 + 1.5 02—> CH2 = CH - C = N + 3 H20. [Pg.236]

The oxidation of propene is at present the most extensively studied gas phase heterogeneous oxidation process. The selective production of acrolein over cuprous oxide has been known for a very long time. However, the discovery of bismuth molybdates as highly active and selective catalysts for the oxidation to acrolein, and particularly the ammoxidation to acrylonitrile, has opened a new era in oxidation catalysis. [Pg.135]

The ammoxidation of propene to acrylonitrile is of great industrial importance and accordingly the literature is abundant. The reaction is very similar to the oxidation of propene to acrylonitrile and carried out at the same conditions and over the same kind of catalysts. The famous bismuth phosphomolybdate catalyst developed by Sohio was the first of a series of highly effective mixed-oxide catalysts. The optimum yields are generally obtained at temperatures of 400—500°C. Initial selectivities over 95% and yields up to 80% are feasible. The superior selectivity of the ammoxida-... [Pg.164]

The strong parallel with the acrolein formation initially suggested the idea that acrolein is a reaction intermediate in the ammoxidation, and can further react with ammonia and oxygen to form acrylonitrile. Although the ammoxidation of acrolein is indeed a very rapid reaction, it is generally accepted today that a direct reaction path to acrylonitrile predominates. The differences between both theories are very small, however, when one assumes that the ammoxidation of acrolein and propene involves the same reaction intermediate. Thus the various kinetic schemes proposed in the literature can be derived from the general scheme below by omitting the reaction steps (3), (4) and/or (5) and variation of the ratio between (2) and (3). [Pg.165]

The selectivity of the ammoxidation of molecules like toluene and xylene is much higher than that of the oxidation of these compounds to aldehydes. The selectivity difference is more pronounced here than in case of propene. The initial selectivities of the propene oxidation and ammoxidation are practically the same, and the selectivity difference is mainly due to the high stability of acrylonitrile compared with acrolein. For aromatic (amm)oxidation, however, the initial selectivities also differ. Apparently, ammonia interacts with the catalyst in such a way that the activity for oxidation of the aromatic nucleus is reduced. [Pg.221]

Iron oxide is an important component in catalysts used in a number of industrially important processes. Table I shows some notable examples which include iron molybdate catalysts in selective oxidation of methanol to formaldehyde, ferrite catalysts in selective oxidative dehyrogenation of butene to butadiene and of ethylbenzene to styrene, iron antimony oxide in ammoxidation of propene to acrylonitrile, and iron chromium oxide in the high temperature water-gas shift reaction. In some other reactions, iron oxide is added as a promoter to improve the performance of the catalyst. [Pg.159]

A somewhat similar mechanism involving Movl-imino species (Mo=NH) resulting from the reaction of ammonia with Mo—O bonds has been suggested for the industrially important ammoxidation of propene to acrylonitrile (equation 109).308... [Pg.354]


See other pages where Acrylonitrile propene ammoxidation is mentioned: [Pg.313]    [Pg.314]    [Pg.318]    [Pg.320]    [Pg.324]    [Pg.326]    [Pg.328]    [Pg.330]    [Pg.332]    [Pg.334]    [Pg.337]    [Pg.338]    [Pg.524]    [Pg.20]    [Pg.187]    [Pg.775]    [Pg.775]    [Pg.776]    [Pg.776]    [Pg.777]    [Pg.785]    [Pg.893]    [Pg.1299]    [Pg.22]    [Pg.167]    [Pg.427]    [Pg.202]    [Pg.588]    [Pg.488]    [Pg.168]    [Pg.181]   


SEARCH



Ammoxidation

Propene, ammoxidation

© 2024 chempedia.info