Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile Conversion

The hydrolysis of nitriles can be carried out with either isolated enzymes or immobilized cells. Eor example, resting cells of P. chlororaphis can accumulate up to 400 g/L of acrylamide in 8 h, provided acrylonitrile is added gradually to avoid nitrile hydratase inhibition (116). The degree of acrylonitrile conversion to acrylamide is 99% without any formation of acryUc acid. Because of its high efficiency the process has been commercialized and currentiy is used by Nitto Chemical Industry Co. on a multithousand ton scale. [Pg.344]

Figure 4.10. Acrylonitrile conversion to acrylamide and membrane specific flux evolution in a ultrafiltration MBR using the strain Brevibacterium imperialis CBS 489-74. Each arrow indicates the restoration of the initial acrylonitrile concentration, The Ap indicates the transmembrane pressure applied. Adapted from Cantarella et al. [4.28], with permission from Elsevier Science. Figure 4.10. Acrylonitrile conversion to acrylamide and membrane specific flux evolution in a ultrafiltration MBR using the strain Brevibacterium imperialis CBS 489-74. Each arrow indicates the restoration of the initial acrylonitrile concentration, The Ap indicates the transmembrane pressure applied. Adapted from Cantarella et al. [4.28], with permission from Elsevier Science.
Figure 7.17. Acrylonitrile conversion over pellet catalysts (PM and base catalysts). Figure 7.17. Acrylonitrile conversion over pellet catalysts (PM and base catalysts).
Figure 7.18. Acrylonitrile conversion vs NOx formation for different catalysts. Figure 7.18. Acrylonitrile conversion vs NOx formation for different catalysts.
In 1957 Standard Oil of Ohio (Sohio) discovered bismuth molybdate catalysts capable of producing high yields of acrolein at high propylene conversions (>90%) and at low pressures (12). Over the next 30 years much industrial and academic research and development was devoted to improving these catalysts, which are used in the production processes for acrolein, acryUc acid, and acrylonitrile. AH commercial acrolein manufacturing processes known today are based on propylene oxidation and use bismuth molybdate based catalysts. [Pg.123]

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

The sulfuric acid hydrolysis may be performed as a batch or continuous operation. Acrylonitrile is converted to acrylamide sulfate by treatment with a small excess of 85% sulfuric acid at 80—100°C. A hold-time of about 1 h provides complete conversion of the acrylonitrile. The reaction mixture may be hydrolyzed and the aqueous acryhc acid recovered by extraction and purified as described under the propylene oxidation process prior to esterification. Alternatively, after reaction with excess alcohol, a mixture of acryhc ester and alcohol is distilled and excess alcohol is recovered by aqueous extractive distillation. The ester in both cases is purified by distillation. [Pg.155]

The propylene-based process developed by Sohio was able to displace all other commercial production technologies because of its substantial advantage in overall production costs, primarily due to lower raw material costs. Raw material costs less by-product credits account for about 60% of the total acrylonitrile production cost for a world-scale plant. The process has remained economically advantaged over other process technologies since the first commercial plant in 1960 because of the higher acrylonitrile yields resulting from the introduction of improved commercial catalysts. Reported per-pass conversions of propylene to acrylonitrile have increased from about 65% to over 80% (28,68—70). [Pg.184]

Residual monomers in the latex are avoided either by effectively reacting the monomers to polymer or by physical or chemical removal. The use of tert-huty peroxypivalate as a second initiator toward the end of the polymeri2ation or the use of mixed initiator systems of K2S20g and tert-huty peroxyben2oate (56) effectively increases final conversion and decreases residual monomer levels. Spray devolatili2ation of hot latex under reduced pressure has been claimed to be effective (56). Residual acrylonitrile also can be reduced by postreaction with a number of agents such as monoamines (57) and dialkylamines (58), ammonium—alkali metal sulfites (59), unsaturated fatty acids or their glycerides (60,61), their aldehydes, esters of olefinic alcohols, cyanuric acid (62,63), andmyrcene (64). [Pg.194]

Although bulk polymerization of acrylonitrile seems adaptable, it is rarely used commercially because the autocatalytic nature of the reaction makes it difficult to control. This, combined with the fact that the rate of heat generated per unit volume is very high, makes large-scale commercial operations difficult to engineer. Lastiy, the viscosity of the medium becomes very high at conversion levels above 40 to 50%. Therefore commercial operation at low conversion requires an extensive monomer recovery operation. [Pg.278]

An example of a commercial semibatch polymerization process is the early Union Carbide process for Dynel, one of the first flame-retardant modacryhc fibers (23,24). Dynel, a staple fiber that was wet spun from acetone, was introduced in 1951. The polymer is made up of 40% acrylonitrile and 60% vinyl chloride. The reactivity ratios for this monomer pair are 3.7 and 0.074 for acrylonitrile and vinyl chloride in solution at 60°C. Thus acrylonitrile is much more reactive than vinyl chloride in this copolymerization. In addition, vinyl chloride is a strong chain-transfer agent. To make the Dynel composition of 60% vinyl chloride, the monomer composition must be maintained at 82% vinyl chloride. Since acrylonitrile is consumed much more rapidly than vinyl chloride, if no control is exercised over the monomer composition, the acrylonitrile content of the monomer decreases to approximately 1% after only 25% conversion. The low acrylonitrile content of the monomer required for this process introduces yet another problem. That is, with an acrylonitrile weight fraction of only 0.18 in the unreacted monomer mixture, the low concentration of acrylonitrile becomes a rate-limiting reaction step. Therefore, the overall rate of chain growth is low and under normal conditions, with chain transfer and radical recombination, the molecular weight of the polymer is very low. [Pg.279]

A significant development ia trifluoromethylpyridine synthesis strategy is the use of fluoriaated aUphatic feedstocks for the ring-constmction sequence. Examples iaclude the manufacture of the herbicide dithiopyr, utilising ethyl 4,4,4-trifluoroacetoacetate [372-31-6] CF2COCH2COOC2H (436,437). 2,3-Dichloro-5-trifluoromethylpyridine [69045-84-7], a precursor to several crop-protection chemicals (see Table 15), can be prepared by conversion of l,l,l-trichloro-2,2,2-trifluoroethane [354-58-5], CF CCl, to 2,2-dichloro-3,3,3-trifluoropropionaldehyde [82107-24-2], CF2CCI2CHO, followed by cycUzation with acrylonitrile [107-13-1] (415). [Pg.338]

Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions. Fig. 15. Oxygen permeability versus 1/specific free volume at 25 °C (30). 1. Polybutadiene 2. polyethylene (density 0.922) 3. polycarbonate 4. polystyrene 5. styrene-acrylonitrile 6. poly(ethylene terephthalate) 7. acrylonitrile barrier polymer 8. poly(methyl methacrylate) 9. poly(vinyl chloride) 10. acrylonitrile barrier polymer 11. vinyUdene chloride copolymer 12. polymethacrylonitrile and 13. polyacrylonitrile. See Table 1 for unit conversions.
An important industrial partial oxidation process is the conversion of propylene to acrylonitrile (26) ... [Pg.181]

AH iagredients in the polymerization recipe are not always added at the beginning of the process. For example, better latex stabHity can sometimes be achieved by starting with only part of the emulsifier, saving the rest for later addition. Sometimes a portion of the modifier is held out for late addition to aHow higher final conversion without premature consumption of aH of it. OccasionaHy, if a low acrylonitrile product is the objective, part of the acrylonitrile monomer wiH be saved for late addition so that a chemically more uniform copolymer is produced, which can sometimes enhance properties in critical appHcations. [Pg.520]

Solution Polymerization These processes may retain the polymer in solution or precipitate it. Polyethylene is made in a tubular flow reactor at supercritical conditions so the polymer stays in solution. In the Phillips process, however, after about 22 percent conversion when the desirable properties have been attained, the polymer is recovered and the monomer is flashed off and recyled (Fig. 23-23 ). In another process, a solution of ethylene in a saturated hydrocarbon is passed over a chromia-alumina catalyst, then the solvent is separated and recyled. Another example of precipitation polymerization is the copolymerization of styrene and acrylonitrile in methanol. Also, an aqueous solution of acrylonitrile makes a precipitate of polyacrylonitrile on heating to 80°C (176°F). [Pg.2102]

So the results obtained by different groups and with different methods display the existence of a completely unusual chemical conversion, polymerization at very low temperatures. Similar effects have been found in y-irradiated acrylonitrile and acrolein [Gerasimov et al. 1980]. [Pg.129]

Both fixed and fluid-bed reactors are used to produce acrylonitrile, but most modern processes use fluid-bed systems. The Montedison-UOP process (Figure 8-2) uses a highly active catalyst that gives 95.6% propylene conversion and a selectivity above 80% for acrylonitrile. The catalysts used in ammoxidation are similar to those used in propylene oxidation to acrolein. Oxidation of propylene occurs readily at... [Pg.218]

Telescope the Process by Combining Stages. This has been done successfully in the conversion of propylene to acrylonitrile by direct ammoxidation rather than oxidation to acrolein followed by reaction with ammonia in a separate stage, as was described in the earlier patent literature. The oxychlorination of ethylene and HC1 directly to vinyl chloride monomer is another good example of the telescoping of stages to yield an economic process. [Pg.241]

A first evaluation of complex 71a by Blechert et al. revealed that its catalytic activity differs significantly from that of the monophosphine complex 56d [49b]. In particular, 71a appears to have a much stronger tendency to promote cross metathesis rather than RCM. Follow-up studies by the same group demonstrate that 71a allows the cross metathesis of electron-deficient alkenes with excellent yields and chemoselectivities [50]. For instance, alkene 72 undergoes selective cross metathesis with 3,3,3-trifluoropropene to give 73 in excellent yield and selectivity. Precatalyst 56d, under identical conditions, furnishes a mixture of 73 and the homodimer of 72 (Scheme 17) [50a]. While 56d was found to be active in the cross metathesis involving acrylates, it failed with acrylonitrile [51]. With 71a, this problem can be overcome, as illustrated for the conversion of 72—>74 (Scheme 17) [50b]. [Pg.246]

Similarly, Garcia-Rubio and Hamielec (17) conducted bulk polymerizations of acrylonitrile at various temperatures and initiator levels in glass ampoules. Their plots of the rate of polymerization as a function of conversion are typical of the extensive radical occlusion in this very glassy polymer. [Pg.272]

Example 13.6 The following data were obtained using low-conversion batch experiments on the bulk (solvent-free), free-radical copol)mierization of styrene (X) and acrylonitrile (Y). Determine the copolymer reactivity ratios for this pol5Tnerization. [Pg.489]

Example 13.7 A 50/50 (molar) mixture of st5Tene and acrylonitrile is batch polymerized by free-radical kinetics until 80% molar conversion of the monomers is achieved. Determine the copolymer composition distribution. [Pg.490]

A continuous polymerization train consisting of two stirred tanks in series is used to copolymerize styrene, rx = 0.41, and acrylonitrile, vy = 0.04. The flow rate to the first reactor is 3000 kg/h and a conversion of 40% is expected. Makeup styrene is fed to the second reactor and a conversion of 30% (based on the 3000 kg/h initial feed) is expected there. What should be the feed composition and how much styrene should be fed to the second reactor if a copolymer containing 58 wt% styrene is desired ... [Pg.506]

Suppose the reactor sized in Problem 13.14 is converted to manufacture a styrene-acrylonitrile copolymer containing 36% acrylonitrile by weight. Assume 50% conversion as before. What is the required feed composition to the reactor and what is the composition of the unreacted monomer mixture ... [Pg.507]


See other pages where Acrylonitrile Conversion is mentioned: [Pg.14]    [Pg.14]    [Pg.288]    [Pg.174]    [Pg.14]    [Pg.14]    [Pg.288]    [Pg.174]    [Pg.283]    [Pg.135]    [Pg.182]    [Pg.192]    [Pg.195]    [Pg.277]    [Pg.280]    [Pg.282]    [Pg.251]    [Pg.503]    [Pg.204]    [Pg.414]    [Pg.520]    [Pg.135]    [Pg.87]    [Pg.558]    [Pg.568]    [Pg.219]    [Pg.26]    [Pg.869]   


SEARCH



© 2024 chempedia.info