Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiator feeds

Many attempts have been made to develop models which predict the behavior of materials undergoing size reduction. One proposal is that the energy expended in size reduction is proportional to the new surface formed (5). Another theory is that the energy required to produce a given reduction ratio (feed size product size) is constant, regardless of initial feed particle size (6). Practical results show, however, that both these theories are limited in their usehilness. [Pg.139]

The effect of solvent concentration on the activity coefficients of the key components is shown in Fig. 13-72 for the system methanol-acetone with either water or methylisopropylketone (MIPK) as solvent. For an initial-feed mixture of 50 mol % methanol and 50 mol % acetone (no solvent present), the ratio of activity coefficients of methanol and acetone is close to unity. With water as the solvent, the activity coefficient of the similar key (methanol) rises slightly as the solvent concentration increases, while the coefficient of acetone approaches the relatively large infinite-dilution value. With methylisopropylketone as the solvent, acetone is the similar key and its activity coefficient drops toward unity as the solvent concentration increases, while the activity coefficient of the methanol increases. [Pg.1314]

The transition from pore-blocked filtration to more favorable cake filtration can therefore be achieved with a suspension of low settling particles by initially feeding it to the filter medium at a low rate for a time period sufficient to allow surface accumulation. This is essentially the practice that is performed with filter aids. [Pg.184]

Assume xi values of bottoms compositions of light key for approximate equal increments from final bottoms to initial feed charge. Calculate L/V values corresponding to the assmned xi values by inserting the various xi values in the Fenske equation for minimum reflux ratio of l-(d). The xi values replace the x b of this relation as the various assumptions are calculated. The actual (L/D) are calculated as in l-(d) keeping the minimmn number of trays constant. Complete the table values. [Pg.56]

This formulation is designed as a single-drum treatment for boilers operating at up to 300 psig and with a total hardness (TH) in the FW of up to 30 ppm CaC03. Initial feed is 15 ppm product per 1 ppm TH (as CaC03) in the FW. Control is based on maintaining 200 to 300 ppm hydroxide (OH) alkalinity and a maximum of 3,000 ppm total dissolved solids (TDS) in the BW. [Pg.418]

When calculating amine consumption rates in industrial and process boilers, estimate the maximum recycling level to be perhaps 75 to 80% of the condensate percentage. Thus, with 80% CR, the amine recycle level may be perhaps 60 to 65% of the initial feed. This does not hold... [Pg.535]

This product is added directly to the fuel tank at the time of delivery and thoroughly blended (by action of the fuel entering the tank). Feed rates typically arel 3,000, although when starting a new program, initial feed rates should be lower. [Pg.688]

As an example, an NMR spectrum of a 1,3-dioxolane-/3-propiolactone copolymer, obtained by using a boron-fluoride catalyst, is shown in Fig. 1101. The 1,3-dioxolane (DOL) homopolymer spectrum contains two singlet peaks of area 1 2 numbered 1 and 5, whereas the spectrum of the 0-propiolactone (PL) homopolymer contains two triplet peaks of area 1 1 numbered 2 and 6. Variation of initial feed ratios disclosed that peaks 1,3 and S are associated with the DOL units and that... [Pg.7]

During polymerization, when Initiator Is Introduced continuously following a predetermined feed schedule, or when heat removal Is completely controllable so that temperature can be programmed with a predetermined temperature policy, we may regard functions [mo(t ], or T(t), as reaction parameters. A common special case of T(t) Is the Isothernral mode, T = constant. In the present analysis, however, we treat only uncontrolled, batch polymerizations In which [mo(t)] and T(t) are reaction variables, subject to variation In accordance with the conservation laws (balances). Thus, only their Initial (feed) values, Imo] andTo, are true parameters. [Pg.17]

Figure 6, Ejfect of solvent concentration on the molecular weight-conversion rehtionships of a tubular-addition polymerization reactor of fix size using a specified initiator type. Each point along the curves represents an optimum initiator feed concentrationr-reactor jacket temperature combination, (kinetic parameters of the initiator Ea = 24,948 Kcal/mol In k/ = 26,494 In sec f = 0.5)... Figure 6, Ejfect of solvent concentration on the molecular weight-conversion rehtionships of a tubular-addition polymerization reactor of fix size using a specified initiator type. Each point along the curves represents an optimum initiator feed concentrationr-reactor jacket temperature combination, (kinetic parameters of the initiator Ea = 24,948 Kcal/mol In k/ = 26,494 In sec f = 0.5)...
Figure 7. Tubular plug-flow addition polymer reactor effect of the frequency factor (ka) of the initiator on the molecular weight-conversion relationship at constant activation energy (Ea). Each point along the curves represents an optimum initiator feed concentration-reactor jacket temperature combination and their values are all different, (Ea = 32.921 Kcal/mol In ka = 35,000 In sec ... Figure 7. Tubular plug-flow addition polymer reactor effect of the frequency factor (ka) of the initiator on the molecular weight-conversion relationship at constant activation energy (Ea). Each point along the curves represents an optimum initiator feed concentration-reactor jacket temperature combination and their values are all different, (Ea = 32.921 Kcal/mol In ka = 35,000 In sec ...
The most comprehensive simulation of a free radical polymerization process in a CSTR is that of Konopnicki and Kuester (15). For a mechanism which includes transfer to both monomer and solvent as well as termination by combination and disproportionation they examined the influence of non-isothermal operation, viscosity effects as well as induced sinuoidal and square-wave forcing functions on initiator feed and jacket temperature on the MWD of the polymer produced. [Pg.256]

One of the few attempts to examine a polymerization reactor in periodic operation experimentally is the work of Spitz, Laurence and Chappelear (X6)who reported the influence of periodicity in the initiator feed to the bulk polymerization of styrene in a CSTR. To induce periodicity the initiator feed was pulsed on-and-off and the reactor output compared with steady-state operation with the same time-averaged initiator input. [Pg.256]

Two typical experiments are described In the first, sinusoidal forcing functions are used for monomer and initiator feeds to the reactor the second experiment is similar except that square-wave forcing functions are used. These forcing functions are shown schematically in Figure l(a,b). [Pg.261]

Instantaneous monomer feed flow-rate. Instantaneous initiator feed flow-rate. Time-averaged monomer solution flow-rate in oscillatory steady-state. [Pg.264]

Experimentally measured initiator concentration in the initiator feed solution... [Pg.391]

Analytical solutions are possible in special cases. It is apparent that transpiration will lower the conversion of the injected component. It is less apparent, but true, that transpired wall reactors can be made to approach the performance of a CSTR with respect to a transpired component while providing an environment similar to piston flow for components that are present only in the initial feed. [Pg.111]

A continuous polymerization train consisting of two stirred tanks in series is used to copolymerize styrene, rx = 0.41, and acrylonitrile, vy = 0.04. The flow rate to the first reactor is 3000 kg/h and a conversion of 40% is expected. Makeup styrene is fed to the second reactor and a conversion of 30% (based on the 3000 kg/h initial feed) is expected there. What should be the feed composition and how much styrene should be fed to the second reactor if a copolymer containing 58 wt% styrene is desired ... [Pg.506]

For a polymerization finishing process to be effective and efficient, good or best values of process variables (temperature, choice of initiator, initiator feed rate and amount, and timing) need to be determined. [Pg.307]

TEMPERATURE FOR SEMI-BATCH AND FINISHING MONOMER FEED RATE DURING SEMI-BATCH STEP INITIATOR FEED RATE DURING SEMI-BATCH STEP TOTAL INITIAL LOADING TIME FOR SEMI-BATCH STEP MONOMER WT. % AT START OF FINISHING INITIATOR WT. PERCENT AT START OF FINISHING TIME FROM START OF... [Pg.311]

This result may be converted to the integral from the initial feed composition (/i)o to some value/i i.e. [Pg.185]

Pt/Pd bimetallic nanoparticles can be prepared by refluxing the alcohol/water (1 1, v/v) solution of palla-dium(II) chloride and hexachloroplatinic(IV) acid in the presence of poly(A-vinyl-2-pyrrolidone) (PVP) at ca. 95 °C for Ih [15,16,48]. The resulting Pd/Pt nanoparticles have a Pt-core/Pd-shell structure with a narrow size distribution and the dispersion is stable against aggregation for several years. The core/shell structure was confirmed by the technique of EAXFS. Composition of Pt/Pd nanoparticles can be controlled by the initially feed amount of two different metal ions, i.e., in this case one... [Pg.52]

Evidently, there are a number of factors that determine which of the above-mentioned pathways of polymerization occurs. One of these is the enrichment of final copolymers with the more hydrophilic comonomer (in comparison with the composition of the initial feeds), due to a higher reactivity of NVIAz. The higher (than for NVC1) reactivity of NVIAz is determined by a stronger polarization of the double bond of the vinyl group by the imidazole moiety as compared with the caprolactam cycle. Furthermore, a good solubility of hydrophilic NVIAz can also contribute to its higher reactivity in aqueous media. [Pg.122]


See other pages where Initiator feeds is mentioned: [Pg.280]    [Pg.446]    [Pg.201]    [Pg.543]    [Pg.1243]    [Pg.1305]    [Pg.1904]    [Pg.216]    [Pg.504]    [Pg.284]    [Pg.284]    [Pg.290]    [Pg.290]    [Pg.112]    [Pg.306]    [Pg.317]    [Pg.318]    [Pg.450]    [Pg.537]    [Pg.160]    [Pg.150]    [Pg.113]    [Pg.88]    [Pg.333]    [Pg.42]    [Pg.245]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



© 2024 chempedia.info