Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cross metathesis selectivity

Attacking the problem of cross-metathesis selectivity from a different angle, Crowe and co-workers explored the reactivity of a more nucleophilic partner for the Ji-substituted alkenes. They chose to use allyltrimethylsilane since they proposed that the CH2SiMe3 substituent should have a negligible effect on alkyli-dene stability, but enhance the nucleophilicity of the alkene via the silicon P-ef-fect (Fig. 1). [Pg.171]

The fifth class of olefin metathesis in Scheme 21.1 is cross-metathesis. Selective cross metathesis is a developing type of metathesis reaction. Expulsion of ethylene usually provides the driving force for cross metathesis. In principle a statistical mixture of olefins would be formed by cross metathesis, as shown in the first reaction of Scheme 21.1. However, kinetic preferences for the reaction of a hindered carbene complex with an unhindered olefin or a kinetic preference for the reaction of an electron-rich carbene with an electron-poor olefin can provide the selectivity needed for the formation of one olefin over other potential homo- and cross-metathesis products. [Pg.1017]

The E/Z selectivity problem is restricted to cross metathesis and RCM leading to macrocycles (macro-RCM). Both aspects have recently been covered in reviews by Blechert et al. [8d] and by Prunet [44]. E/Z selectivity can be influenced by reaction temperature, solvent or substitution pattern of the substrate. Here, we will only discuss the influence of the precatalyst. [Pg.242]

A first evaluation of complex 71a by Blechert et al. revealed that its catalytic activity differs significantly from that of the monophosphine complex 56d [49b]. In particular, 71a appears to have a much stronger tendency to promote cross metathesis rather than RCM. Follow-up studies by the same group demonstrate that 71a allows the cross metathesis of electron-deficient alkenes with excellent yields and chemoselectivities [50]. For instance, alkene 72 undergoes selective cross metathesis with 3,3,3-trifluoropropene to give 73 in excellent yield and selectivity. Precatalyst 56d, under identical conditions, furnishes a mixture of 73 and the homodimer of 72 (Scheme 17) [50a]. While 56d was found to be active in the cross metathesis involving acrylates, it failed with acrylonitrile [51]. With 71a, this problem can be overcome, as illustrated for the conversion of 72—>74 (Scheme 17) [50b]. [Pg.246]

Olefin metathesis of vinylboronates [102] and allylboronates [103, 104] has been investigated over the past few years because organoboranes are versatile intermediates for organic synthesis. Cross metathesis of vinylboronate 108 and 2-butene 109, for example, yields the boronate 110, which can be converted to the corresponding vinyl bromide 111 with high Z selectivity. Vinyl iodides can be obtained analogously. It should be noted that vinyl bromides and vinyl... [Pg.255]

Bent ansa-metallocenes of early transition metals (especially Ti, Zr, Hf) have attracted considerable interest due to their catalytic activity in the polymerization of a-olefins. Ruthenium-catalyzed olefin metathesis has been used to connect two Cp substituents coordinated to the same metal [120c, 121a] by RCM or to connect two bent metallocenes by cross metathesis [121b]. A remarkable influence of the catalyst on E/Z selectivity was described for the latter case while first-generation catalyst 9 yields a 1 1 mixture of E- and Z-dimer 127, -127 is the only product formed with 56d (Eq. 19). [Pg.259]

Olefin cross metathesis starts to compete with traditional C=C bondforming reactions such as the Wittig reaction and its modifications, as illustrated by the increasing use of electron-deficient conjugated alkenes for the ( )-selective construction of enals and enoates. [Pg.359]

While alkane metathesis is noteworthy, it affords lower homologues and especially methane, which cannot be used easily as a building block for basic chemicals. The reverse reaction, however, which would incorporate methane, would be much more valuable. Nonetheless, the free energy of this reaction is positive, and it is 8.2 kj/mol at 150 °C, which corresponds to an equihbrium conversion of 13%. On the other hand, thermodynamic calculation predicts that the conversion can be increased to 98% for a methane/propane ratio of 1250. The temperature and the contact time are also important parameters (kinetic), and optimal experimental conditions for a reaction carried in a continuous flow tubiflar reactor are as follows 300 mg of [(= SiO)2Ta - H], 1250/1 methane/propane mixture. Flow =1.5 mL/min, P = 50 bars and T = 250 °C [105]. After 1000 min, the steady state is reached, and 1.88 moles of ethane are produced per mole of propane consmned, which corresponds to a selectivity of 96% selectivity in the cross-metathesis reaction (Fig. 4). The overall reaction provides a route to the direct transformation of methane into more valuable hydrocarbon materials. [Pg.184]

The enyne cross metathesis was first developed in 1997 [170,171]. Compared to CM it benefits from its inherent cross-selectivity and in theory it is atom economical, though in reality the aUcene cross-partner is usually added in excess. The inabihty to control product stereochemistry of ECM reactions is the main weakness of the method. ECM reactions are often directly combined with other transformations like cyclopropanation [172], Diels-Alder reactions [173], cychsations [174] or ring closing metathesis [175]. [Pg.97]

Selected examples of these and related applications are authoritatively discussed in the chapters by K.C. Nicolaou et al. (epothilone libraries) and S.E. Gibson and S.P. Keen (cross metathesis processes on solid phase) in this monograph. For some further advancements, the reader is referred to the recent literature [45]. [Pg.68]

Allylsilanes Good Cross-/Self-Metathesis Selectivity. 162... [Pg.164]

For the majority of substrates only trace amounts (<10%) of the self-metathesis products were isolated. Cross-/self-metathesis selectivity was significantly lowered, however, by the inductive effect of electron-withdrawing substituents on the alkyl-substituted alkene. Even moving a bromide one carbon closer to the double bond resulted in a significant decrease in the cross-/self-metathesis ratio (Eq.7). [Pg.169]

The reaction tolerated a variety of functionality, including ester and ether groups on the alkyl-substituted alkene at least two carbons away from the double bond, and raefa-nitro or para-methoxy substituents on the styrene. As expected, cross-metathesis occurred selectively at the less hindered monosubsti-tuted double bond of dienes also containing a disubstituted alkene (Eq. 8). [Pg.170]

The two alkenes were so similar electronically and sterically, with the ester group too far away to have any affect on the double bond, that there was very little cross-/self-metathesis selectivity. An approximately statistical mixture of ester 13 and diester 14 was isolated. The high yield of the cross-metathesis product 13 obtained is due to the excess of the volatile hex-l-ene used, rather than a good cross-/self-metathesis selectivity. Although not as predominant as in the reactions involving styrene, trans alkenes were still the major products. [Pg.170]

Like styrene, acrylonitrile is a non-nucleophilic alkene which can stabilise the electron-rich molybdenum-carbon bond and therefore the cross-/self-metathe-sis selectivity was similarly dependent on the nucleophilicity of the second alkene [metallacycle 10 versus 12, see Scheme 2 (replace Ar with CN)]. A notable difference between the styrene and acrylonitrile cross-metathesis reactions is the reversal in stereochemistry observed, with the cis isomer dominating (3 1— 9 1) in the nitrile products. In general, the greater the steric bulk of the alkyl-substituted alkene, the higher the trans cis ratio in the product (Eq. 11). [Pg.171]

Cross-metathesis reactions with styrenes or acrylonitrile gave yields and cist trans selectivities that were comparable with the best results obtained in the previous reports (for example Eq. 12). [Pg.171]

As expected, there was no formation of stilbenes or a dinitrile product and, more surprisingly, in all of the reactions reported only 5-7% of the allyltrimeth-ylsilane self-metathesis product was observed. It was proposed that this lack of allylsilane self-metathesis was due to the steric bulk of the TMS group reducing the reactivity of the Me3SiCH2 substituted alkylidene. In a more recent report by Blechert and co-workers it was noted that allyltrimethylsilane and its hydrocarbon equivalent (4,4-dimethylpent-l-ene) had comparable reactivities in the cross-metathesis reaction [28], further suggesting that the selectivity arises from steric rather than electronic effects. [Pg.172]

From the single comparative study reported, it appears that increasing the steric bulk of the silyl group in the allyltrialkylsilane can significantly enhance the trans selectivity of the cross-metathesis reaction without adversely affecting the yield (Eq. 14). [Pg.172]

Barrett and Gibson also reported the application of the molybdenum catalysed cross-metathesis reaction to the elaboration of (3-lactams [31,32]. Protected allyloxy p-lactams 16 were successfully cross-metathesised with a selection of substituted styrenes to yield trans cross-metathesis products (Eq. 16). [Pg.173]

Optimal yields were obtained by slow addition of the alkene substrates to a solution of the ruthenium vinylalkylidene and this allowed just two equivalents of the acyclic alkene to be used without significant formation of polymeric products. Unlike the acyclic cross-metathesis reactions, which generally favour the formation of tram products, the above ring-opening metathesis reactions yielded products in which the cis stereoisomer is predominant. Particularly noteworthy was the absence of significant amounts of products of type 31, formed from metathesis of one cyclic and two acyclic alkenes. In fact, considering the number of possible ring-opened products that could have been formed, these reactions showed remarkable selectivity (GC yields > 80%). [Pg.183]

Snapper proposed that the selectivity for the formation of cross-metathesis products 41 observed in these reactions was due to the differing reactivities of the various ruthenium alkylidene species formed in the catalytic cycle (Scheme 6). [Pg.183]

A subsequent publication by Blechert and co-workers demonstrated that the molybdenum alkylidene 3 and the ruthenium benzylidene 17 were also active catalysts for ring-opening cross-metathesis reactions [50]. Norbornene and 7-oxanorbornene derivatives underwent selective ring-opening cross-metathesis with a variety of terminal acyclic alkenes including acrylonitrile, an allylsilane, an allyl stannane and allyl cyanide (for example Eq. 34). [Pg.185]

The cross-metathesis reaction has evolved extensively during the past few years, but there is still a considerable amount of work to be done before the full potential of this reaction is realised. The development of new metathesis catalysts, greater understanding and control of selectivity, and more extensive applications in synthesis that will surely follow in the near future, make this a particularly exciting time in the evolution of the alkene cross-metathesis reaction. [Pg.189]

Only recently a selective crossed metathesis between terminal alkenes and terminal alkynes has been described using the same catalyst.6 Allyltrimethylsilane proved to be a suitable alkene component for this reaction. Therefore, the concept of immobilizing terminal olefins onto polymer-supported allylsilane was extended to the binding of terminal alkynes. A series of structurally diverse terminal alkynes was reacted with 1 in the presence of catalytic amounts of Ru.7 The resulting polymer-bound dienes 3 are subject to protodesilylation (1.5% TFA) via a conjugate mechanism resulting in the formation of products of type 6 (Table 13.3). Mixtures of E- and Z-isomers (E/Z = 8 1 -1 1) are formed. The identity of the dominating E-isomer was established by NOE analysis. [Pg.146]

McNaughton, B. R. Bucholtz, K. M. Camaano-Moure, A. Miller, B. L. Self-selection in olefin cross metathesis The effect of remote functionality. Org. Lett. 2005, 7, 733-736. [Pg.40]

As described above in Eq. 43, simple allylboronates can be transformed into more elaborated ones using olefin cross-metathesis. " Treatment of pinacol allylboronate 31 with a variety of olefin partners in the presence of Grubbs second-generation catalyst 142 smoothly leads to formation of 3-substituted allylboronates 143 as cross-metathesis products (Eq. 104). Unfortunately, these new allylic boronates are formed as mixtures of geometrical isomers with modest E/Z selectivity. They are not isolated but rather are treated directly with benzaldehyde to give the corresponding homoallylic alcohol products in good yields (Table A). [Pg.53]


See other pages where Cross metathesis selectivity is mentioned: [Pg.281]    [Pg.65]    [Pg.281]    [Pg.65]    [Pg.246]    [Pg.247]    [Pg.249]    [Pg.254]    [Pg.255]    [Pg.219]    [Pg.180]    [Pg.102]    [Pg.485]    [Pg.164]    [Pg.168]    [Pg.177]    [Pg.184]    [Pg.185]    [Pg.188]    [Pg.145]    [Pg.481]    [Pg.502]    [Pg.291]    [Pg.54]    [Pg.176]    [Pg.179]   
See also in sourсe #XX -- [ Pg.322 ]




SEARCH



Cross metathesis

Cross selective

Cross-selection

Selectivity metathesis

Selectivity, olefin cross-metathesis

© 2024 chempedia.info