Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile—butadiene—styrene properties

Analytical investigations may be undertaken to identify the presence of an ABS polymer, characterize the polymer, or identify nonpolymeric ingredients. Fourier transform infrared (ftir) spectroscopy is the method of choice to identify the presence of an ABS polymer and determine the acrylonitrile—butadiene—styrene ratio of the composite polymer (89,90). Confirmation of the presence of mbber domains is achieved by electron microscopy. Comparison with available physical property data serves to increase confidence in the identification or indicate the presence of unexpected stmctural features. Identification of ABS via pyrolysis gas chromatography (91) and dsc ((92) has also been reported. [Pg.204]

Automotive appHcations account for about 116,000 t of woddwide consumption aimuaHy, with appHcations for various components including headlamp assembHes, interior instmment panels, bumpers, etc. Many automotive appHcations use blends of polycarbonate with acrylonitrile—butadiene—styrene (ABS) or with poly(butylene terephthalate) (PBT) (see Acrylonitrile polymers). Both large and smaH appHances also account for large markets for polycarbonate. Consumption is about 54,000 t aimuaHy. Polycarbonate is attractive to use in light appHances, including houseware items and power tools, because of its heat resistance and good electrical properties, combined with superior impact resistance. [Pg.285]

Acrylonitrile—Butadiene—Styrene. ABS is an important commercial polymer, with numerous apphcations. In the late 1950s, ABS was produced by emulsion grafting of styrene-acrylonitrile copolymers onto polybutadiene latex particles. This method continues to be the basis for a considerable volume of ABS manufacture. More recently, ABS has also been produced by continuous mass and mass-suspension processes (237). The various products may be mechanically blended for optimizing properties and cost. Brittle SAN, toughened by SAN-grafted ethylene—propylene and acrylate mbbets, is used in outdoor apphcations. Flame retardancy of ABS is improved by chlorinated PE and other flame-retarding additives (237). [Pg.419]

Property Polystyrene (PS) Poly(styrene-i) (j-acrjio-nitrile ) (SAN) Glass-fil led PS High impact PS HIPS Acrylonitrile— butadiene—styrene terpolymer (ABS) Type 1 Type 2 Standard ABS Super ABS... [Pg.503]

Rubber-Modified Copolymers. Acrylonitrile—butadiene—styrene polymers have become important commercial products since the mid-1950s. The development and properties of ABS polymers have been discussed in detail (76) (see Acrylonitrile polymers). ABS polymers, like HIPS, are two-phase systems in which the elastomer component is dispersed in the rigid SAN copolymer matrix. The electron photomicrographs in Figure 6 show the difference in morphology of mass vs emulsion ABS polymers. The differences in stmcture of the dispersed phases are primarily a result of differences in production processes, types of mbber used, and variation in mbber concentrations. [Pg.508]

Acrylonitrile-butadiene-styrene (ABS). ABS materials have superior strength, stiffness and toughness properties to many plastics and so they are often considered in the category of engineering plastics. They compare favourably with nylon and acetal in many applications and are generally less expensive. However, they are susceptible to chemical attack by chlorinated solvents, esters, ketones, acids and alkalis. [Pg.16]

Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004). Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45 739-748. [Pg.218]

ISO 580 1990 Injection-moulded unplasticized poly(vinyl chloride) (PVC-U) fittings -Oven test - Test method and basic specifications ISO 727-1 2002 Fittings made from unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly (vinyl chloride) (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Part 1 Metric series ISO 727-2 2002 Fittings made from unplasticized poly(vinyl chloride) (PVC-U), chlorinated poly (vinyl chloride) (PVC-C) or acrylonitrile/butadiene/styrene (ABS) with plain sockets for pipes under pressure - Part 2 Inch-based series ISO 1163-1 1995 Plastics - Unplasticized poly(vinyl chloride) (PVC-U) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 1163-2 1995 Plastics - Unplasticized poly(vinyl chloride) (PVC-U) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties ISO 1265 1979 Plastics - Polyvinyl chloride resins - Determination of number of impurities and foreign particles... [Pg.322]

ISO 10366-1 2002 Plastics - Methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) moulding and extrusion materials - Part 1 Designation system and basis for specifications ISO 10366-2 2003 Plastics - Methyl methacrylate-acrylonitrile-butadiene-styrene (MABS) moulding and extrusion materials - Part 2 Preparation of test specimens and determination of properties... [Pg.363]

When polymerization proceeds in the presence of modifiers, the mechanochemical process enhances cross-linking and, correspondingly, improves the physicochemical properties of final plastics. For example, mechanochemical treatment of acrylonitrile butadiene styrene (ABS) plastic in the presence of tolnene diisocyanate improves thermal oxidative stability of the plastic (Chetverikov et al. 2002). [Pg.284]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

Most acrylonitrile-butadiene styrene terpolymer (ABS) is produced as a graft of SAN onto a butadiene polymer backbone. This graft copolymer may be blended with more SAN or acrylonitrile elastomer (NBR) to improve its properties. ABS is more ductile than SAN. The Tt and the heat deflection temperature of ABS vary with the composition, and ABS may have one set of values for the PBD domains and another set for the SAN matrix. The permeabilities of ABS to oxygen, nitrogen, and carbon dioxide are much less than those of hope. [Pg.149]

Methacrylonitrile (1) differs from 2 only in that it has a methyl (CH3) group on the a-carbon atom. It too is widely used in the preparation of homopolymers and copolymers, elastomers, and plastics and as a chemical intermediate in the preparation of acids, amides, amines, esters, and other nitriles. In a study conducted by the NTP in which 1 was administered orally to mice for 2 years, there was no evidence that it caused cancer, although other less serious toxic effects were noted [27]. Because 1 does not cause cancer, but undergoes many of the same nucleophilic addition reactions as 2 at the (3-carbon, it is sometimes used as a safer commercial replacement for 2, such as in the manufacture of an acrylonitrile-butadiene-styrene-like polymer that provides improved barrier properties to gases such as carbon dioxide in carbonated beverage containers. [Pg.12]

Y. Li and H. Shimizu, Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile-butadiene-styrene copolymer (ABS) Morphology and properties, Eur. Polym. J., 45 (3) 738-746, March 2009. [Pg.258]

A. Arostegui, M. Sarrionandia, J. Aurrekoetxea, and I. Urrutibeas-coa, Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile-butadiene-styrene copolymer, Polym. Degrad. Stab., 91(ll) 2768-2774, November 2006. [Pg.266]

The effectiveness of methacrylate-grafted latex rubbers for HIPS was unexpected because of the poor miscibility properties of these type of polymers (5). The situation is different in the case of acrylonitrile-butadiene-styrene (ABS) types that are miscible with methacrylate-grafted latex rubbers. [Pg.270]

Fe203 and Fe304 in presence of a chloride source act as flame retardants for nitrile-containing plastics and rubbers such as acrylonitrile-butadiene-styrene copolymers.52 The activity appears to be connected with the formation of FeCl3 on combustion, but other properties of FeCl3 itself make it unsuitable for direct use. If an alkyl chloride is present iron(II) citrate may be used, and for halogen-containing nitrile polymers acetates, stearates, sulfates and carbonates are effective. [Pg.1017]

This study was therefore undertaken to prepare and evaluate acrylonitrile—butadiene-styrene (ABS) and methyl methacrylate-butadiene-styrene (MBS) polymers under similar conditions to determine whether replacement of acrylonitrile by methyl methacrylate could improve color stability during ultraviolet light aging, without detracting seriously from the good mechanical and thermal-mechanical properties of conventional ABS plastics. For purposes of control, the study also included briefer evaluation of commercial ABS, MBS, and acrylonitrile-butyl acrylate-styrene plastics. [Pg.242]

Acrylonitrile-Butadiene-Styrene (ABS) Copolymers. This basic three-monomer system can be tailored to yield resins with a variety of properties. Acrylonitrile contributes heat resistance, high strength, and chemical resistance. Butadiene contributes impact strength, toughness, and retention of low-temperature properties. Styrene contributes gloss, processibility, and rigidity. ABS polymers are composed of discrete polybutadiene particles grafted with the styrene-acrylonitrile copolymer these are dispersed in the continuous matrix of the copolymer. [Pg.912]

Another widely used copolymer is high impact polystyrene (PS-HI), which is formed by grafting polystyrene to polybutadiene. Again, if styrene and butadiene are randomly copolymerized, the resulting material is an elastomer called styrene-butadiene-rubber (SBR). Another classic example of copolymerization is the terpolymer acrylonitrile-butadiene-styrene (ABS). Polymer blends belong to another family of polymeric materials which are made by mixing or blending two or more polymers to enhance the physical properties of each individual component. Common polymer blends include PP-PC, PVC-ABS, PE-PTFE and PC-ABS. [Pg.18]

The most common advanced composites are made of thermosetting resins, such as epoxy polymers (the most popular singlematrix material), polyesters, vinyl esters, polyurethanes, polyimids, cianamids, bismaleimides, silicones, and melamine. Some of the most widely used thermoplastic polymers are polyvinyl chloride (PVC), PPE (poly[phenylene ether]), polypropylene, PEEK (poly [etheretherketone]), and ABS (acrylonitrile-butadiene-styrene). The precise matrix selected for any given product depends primarily on the physical properties desired for that product. Each type of resin has its own characteristic thermal properties (such as melting point... [Pg.30]


See other pages where Acrylonitrile—butadiene—styrene properties is mentioned: [Pg.1023]    [Pg.191]    [Pg.202]    [Pg.421]    [Pg.504]    [Pg.327]    [Pg.261]    [Pg.219]    [Pg.323]    [Pg.363]    [Pg.196]    [Pg.1292]    [Pg.75]    [Pg.362]    [Pg.530]    [Pg.84]    [Pg.12]    [Pg.327]    [Pg.421]    [Pg.261]    [Pg.240]    [Pg.216]    [Pg.153]    [Pg.184]    [Pg.88]    [Pg.167]    [Pg.387]   
See also in sourсe #XX -- [ Pg.348 , Pg.349 , Pg.350 , Pg.351 ]

See also in sourсe #XX -- [ Pg.317 ]




SEARCH



Acrylonitril-butadiene-styrene

Acrylonitrile-butadiene-styrene

Butadiene, properties

Butadiene-acrylonitrile

STYRENE-ACRYLONITRILE

Styrene properties

Styrene-butadiene

© 2024 chempedia.info