Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylamide process

The biocatalytic acrylamide process is run by the Nitto Chemical Corp., now part of the Mitsubishi Rayon Corp., in Tokyo Bay on a scale of 30 000 tpy, in fed-batch mode up to 25-40% acrylamide at 0-10°C to complete conversion and with product yields > 99.9%, conditions under which a significant cost differential can be assumed with respect to the conventional chemical process. [Pg.161]

Japan, this process replaced an add-catalyzed process, and also avoided the acrylic acid by-produd [29]. Biocatalytic acrylamide processes are now running at 50 000 tpa worldwide. [Pg.18]

Biocatalysis is one of a number of forms of chemical catalysis (Fig. 1) that can be utilized to synthesize a variety of organic chemicals. Over 60% of the 135 MM tons of organic chemicals produced in the United States involve a catalytic step somewhere in their manufacture (1,2). In recent years many reports and reviews extolling the virtues of biocatalysis for the production of chemicals have been released (e.g., 3-9). However, there have still been very few examples of commercial chemical processes introduced in the last few years that utilize a biocatalyst, for example, the acrylamide process (10-12). There has been small but growing concern as to the validity of the expectations placed on bioconversion-based chemical process (13). [Pg.213]

Enzymes also provide a potential means to utilize alternate feedstocks which cannot be selectively activated by conventional catalysts, or to improve selectivity over traditional systems. For example, the hydroxylase enzymes convert paraffins to alcohols with virtually 100X selectivity, a reaction which has no analogue in traditional catalysis (7). The Nitto acrylonitrile to acrylamide process is an example o7 how biocatalysis can improve selectivity over traditional catalysis (8-10). [Pg.4]

Mode of operation (fed)-batch versus continuous Parameters for decision kinetics, stability and form of the biocatalyst desired substrate conversion, product concentration (solubility) need of process control, inhibitory/toxic effect of substrate or product. Examples for fed-batch bioprocesses acrylamide process (Nitto Chemicals), L-carnitine process (Lonza). Examples for continuous operation.- production of L-tert. leucine and other amino acids (Degussa). [Pg.205]

H. Spoor, German Patent 2,064,101 (1972) Chem. Abstr. 71,127438u (1972). Chemistry of Acrylamide. Process Chemicals Department, American Cy-anamid Co., Wayne, New Jersey, 1969. [Pg.302]

Hydrolyzed Polyacrylamide. HPAM (6) can be prepared by a free-radical process ia which acrylamide is copolymerized with incremental amounts of acryUc acid or through homopolymerization of acrylamide followed by hydrolysis of some of the amide groups to carboxylate units. [Pg.317]

The carboxylated units, ionized, decrease adsorption on subterranean substrates (23), ia proportion to the number of units, an important parameter ia petroleum recovery processes. In waste treatment processes cationic acrylamide comonomer units are often used (31) to iacrease adsorption and thereby flocculation of soHds ia wastewater (see Acrylamide POLYMERS Flocculating agents). The favorable and characteristics of acrylamide facilitate the... [Pg.317]

The amide group is readily hydrolyzed to acrylic acid, and this reaction is kinetically faster in base than in acid solutions (5,32,33). However, hydrolysis of N-alkyl derivatives proceeds at slower rates. The presence of an electron-with-drawing group on nitrogen not only facilitates hydrolysis but also affects the polymerization behavior of these derivatives (34,35). With concentrated sulfuric acid, acrylamide forms acrylamide sulfate salt, the intermediate of the former sulfuric acid process for producing acrylamide commercially. Further reaction of the salt with alcohols produces acrylate esters (5). In strongly alkaline anhydrous solutions a potassium salt can be formed by reaction with potassium / /-butoxide in tert-huty alcohol at room temperature (36). [Pg.134]

The current routes to acrylamide are based on the hydration of inexpensive and readily available acrylonitrile [107-13-1] (C3H3N, 2-propenenittile, vinyl cyanide, VCN, or cyanoethene) (see Acrylonitrile). For many years the principal process for making acrylamide was a reaction of acrylonitrile with H2SO4 H2O followed by separation of the product from its sulfate salt using a base neutralization or an ion exclusion column (68). [Pg.134]

The ratio of reactants had to be controlled very closely to suppress these impurities. Recovery of the acrylamide product from the acid process was the most expensive and difficult part of the process. Large scale production depended on two different methods. If soHd crystalline monomer was desired, the acrylamide sulfate was neutralized with ammonia to yield ammonium sulfate. The acrylamide crystallized on cooling, leaving ammonium sulfate, which had to be disposed of in some way. The second method of purification involved ion exclusion (68), which utilized a sulfonic acid ion-exchange resin and produced a dilute solution of acrylamide in water. A dilute sulfuric acid waste stream was again produced, and, in either case, the waste stream represented a... [Pg.134]

Even ia 1960 a catalytic route was considered the answer to the pollution problem and the by-product sulfate, but nearly ten years elapsed before a process was developed that could be used commercially. Some of the eadier attempts iacluded hydrolysis of acrylonitrile on a sulfonic acid ion-exchange resia (69). Manganese dioxide showed some catalytic activity (70), and copper ions present ia two different valence states were described as catalyticaHy active (71), but copper metal by itself was not active. A variety of catalysts, such as Umshibara or I Jllmann copper and nickel, were used for the hydrolysis of aromatic nitriles, but aUphatic nitriles did not react usiag these catalysts (72). Beginning ia 1971 a series of patents were issued to The Dow Chemical Company (73) describiag the use of copper metal catalysis. Full-scale production was achieved the same year. A solution of acrylonitrile ia water was passed over a fixed bed of copper catalyst at 85°C, which produced a solution of acrylamide ia water with very high conversions and selectivities to acrylamide. [Pg.135]

The heat of hydration is approximately —70 kj /mol (—17 kcal/mol). This process usually produces no waste streams, but if the acrylonitrile feed contains other nitrile impurities, they will be converted to the corresponding amides. Another reaction that is prone to take place is the hydrolysis of acrylamide to acryhc acid and ammonia. However, this impurity can usually be kept at very low concentrations. American Cyanamid uses a similar process ia both the United States and Europe, which provides for their own needs and for sales to the merchant market. [Pg.135]

Mitsui Toatsu Chemical, Inc. disclosed a similar process usiag Raney copper (74) shortiy after the discovery at Dow, and BASF came out with a variation of the copper catalyst ia 1974 (75). Siace 1971 several hundred patents have shown modifications and improvements to this technology, both homogeneous and heterogeneous, and reviews of these processes have been pubHshed (76). Nalco Chemical Company has patented a process based essentially on Raney copper catalyst (77) ia both slurry and fixed-bed reactors and produces acrylamide monomer mainly for internal uses. Other producers ia Europe, besides Dow and American Cyanamid, iaclude AUied CoUoids and Stockhausen, who are beheved to use processes similar to the Raney copper technology of Mitsui Toatsu, and all have captive uses. Acrylamide is also produced ia large quantities ia Japan. Mitsui Toatsu and Mitsubishi are the largest producers, and both are beheved to use Raney copper catalysts ia a fixed bed reactor and to sell iato the merchant market. [Pg.135]

The largest production of acrylamide is in Japan the United States and Europe also have large production faciUties. Some production is carried out in the Eastern Bloc countries, but details concerning quantities or processes are difficult to obtain. The principal producers in North America are The Dow Chemical Company, American Cyanamid Company, and Nalco Chemical Company (internal use) Dow sells only aqueous product and American Cyanamid sells both Hquid and sohd monomer. In Europe, Chemische Eabrik Stockhausen Cie, Ahied CoUoids, The Dow Chemical Company, and Cyanamid BV are producers Dow and American Cyanamid are the only suppHers to the merchant market, and crystalline monomer is available from American Cyanamid. Eor Japan, producers are Mitsubishi Chemical Industries, Mitsui Toatsu, and Nitto Chemical Industries Company (captive market). Crystals and solutions are available from Mitsui Toatsu and Mitsubishi, whereas only solution monomer is available from Nitto. [Pg.136]

Manufacturing processes have been improved by use of on-line computer control and statistical process control leading to more uniform final products. Production methods now include inverse (water-in-oil) suspension polymerization, inverse emulsion polymerization, and continuous aqueous solution polymerization on moving belts. Conventional azo, peroxy, redox, and gamma-ray initiators are used in batch and continuous processes. Recent patents describe processes for preparing transparent and stable microlatexes by inverse microemulsion polymerization. New methods have also been described for reducing residual acrylamide monomer in finished products. [Pg.139]

Solution polyacrylamides can also be prepared at high polymer soHds by radiation processes (80,81). Polyacrylamides with molecular weights up to 20 million can be prepared by inradiation of acrylamide and comonomers in a polyethylene bag with cobalt-60 gamma radiation at dose rates of 120-200 J/kg-h. The total dose of radiation is controlled to avoid cross-linking. [Pg.142]

Recent patents and pubHcations describe process improvements. Conversions can be followed by on-line hplc (93). The enzyme amidase can be used to reduce residual monomers (94—96). A hydrogenation process for reduction of acrylamide in emulsions containing more that 5% residual monomer has been patented (95). Biodegradable oils have been developed (97). [Pg.143]

Superabsorbents. Water-sweUable polymers are used extensively in consumer articles and for industrial appUcations. Most of these polymers are cross-linked acryUc copolymers of metal salts of acryUc acid and acrylamide or other monomers such as 2-acrylamido-2-methylpropanesulfonic acid. These hydrogel forming systems can have high gel strength as measured by the shear modulus (134). Sometimes inorganic water-insoluble powder is blended with the polymer to increase gel strength (135). Patents describe processes for making cross-linked polyurethane foams which contain superabsorbent polymers (136,137). [Pg.144]

The yield of acrylonitrile based on propylene is generally lower than the yield of acryhc acid based on the dkect oxidation of propylene. Hence, for the large volume manufacture of acrylates, the acrylonitrile route is not attractive since additional processing steps are involved and the ultimate yield of acrylate based on propylene is much lower. Hydrolysis of acrylonitrile can be controUed to provide acrylamide rather than acryhc acid, but acryhc acid is a by-product in such a process (80). [Pg.155]

The sulfuric acid hydrolysis may be performed as a batch or continuous operation. Acrylonitrile is converted to acrylamide sulfate by treatment with a small excess of 85% sulfuric acid at 80—100°C. A hold-time of about 1 h provides complete conversion of the acrylonitrile. The reaction mixture may be hydrolyzed and the aqueous acryhc acid recovered by extraction and purified as described under the propylene oxidation process prior to esterification. Alternatively, after reaction with excess alcohol, a mixture of acryhc ester and alcohol is distilled and excess alcohol is recovered by aqueous extractive distillation. The ester in both cases is purified by distillation. [Pg.155]

Starch is a polysaccharide found in many plant species. Com and potatoes are two common sources of industrial starch. The composition of starch varies somewhat in terms of the amount of branching of the polymer chains (11). Its principal use as a flocculant is in the Bayer process for extracting aluminum from bauxite ore. The digestion of bauxite in sodium hydroxide solution produces a suspension of finely divided iron minerals and siUcates, called red mud, in a highly alkaline Hquor. Starch is used to settle the red mud so that relatively pure alumina can be produced from the clarified Hquor. It has been largely replaced by acryHc acid and acrylamide-based (11,12) polymers, although a number of plants stiH add some starch in addition to synthetic polymers to reduce the level of residual suspended soHds in the Hquor. Starch [9005-25-8] can be modified with various reagents to produce semisynthetic polymers. The principal one of these is cationic starch, which is used as a retention aid in paper production as a component of a dual system (13,14) or a microparticle system (15). [Pg.32]

Polyamines can also be made by reaction of ethylene dichloride with amines (18). Products of this type are sometimes formed as by-products in the manufacture of amines. A third type of polyamine is polyethyleneimine [9002-98-6] which can be made by several routes the most frequently used method is the polymeriza tion of azitidine [151 -56 ] (18,26). The process can be adjusted to vary the amount of branching (see Imines, cyclic). Polyamines are considerably lower in molecular weight compared to acrylamide polymers, and therefore their solution viscosities are much lower. They are sold commercially as viscous solutions containing 1—20% polymer, and also any by-product salts from the polymerization reaction. The charge on polyamines depends on the pH of the medium. They can be quaternized to make their charge independent of pH (18). [Pg.33]


See other pages where Acrylamide process is mentioned: [Pg.250]    [Pg.250]    [Pg.5]    [Pg.217]    [Pg.708]    [Pg.339]    [Pg.250]    [Pg.250]    [Pg.5]    [Pg.217]    [Pg.708]    [Pg.339]    [Pg.2594]    [Pg.317]    [Pg.132]    [Pg.134]    [Pg.135]    [Pg.135]    [Pg.136]    [Pg.139]    [Pg.142]    [Pg.142]    [Pg.143]    [Pg.143]    [Pg.180]    [Pg.186]    [Pg.282]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



Acrylamide biocatalytic process

Mitsubishi Rayon acrylamide process

Nitto biocatalytic acrylamide process

© 2024 chempedia.info