Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetaldehyde olefin oxidation

Halogens, See also Bromine (Br) Chlorine (Cl) Fluorine (F) Iodine (I) higher aliphatic alcohols, 2 5 in N-halamines, 13 98 reactions with acetaldehyde, 1 105 reactions with acetone, 1 163 reactions with acetylene, 1 180 reactions with alkanolamines from olefin oxides and ammonia, 2 125—126 reactions with aluminum, 2 284—285, 349-359... [Pg.417]

The results of the olefin oxidation catalyzed by 19, 57, and 59-62 are summarized in Tables VI-VIII. Table VI shows that linear terminal olefins are selectively oxidized to 2-ketones, whereas cyclic olefins (cyclohexene and norbomene) are selectively oxidized to epoxides. Cyclopentene shows exceptional behavior, it is oxidized exclusively to cyclopentanone without any production of epoxypentane. This exception would be brought about by the more restrained and planar pen-tene ring, compared with other larger cyclic nonplanar olefins in Table VI, but the exact reason is not yet known. Linear inner olefin, 2-octene, is oxidized to both 2- and 3-octanones. 2-Methyl-2-butene is oxidized to 3-methyl-2-butanone, while ethyl vinyl ether is oxidized to acetaldehyde and ethyl alcohol. These products were identified by NMR, but could not be quantitatively determined because of the existence of overlapping small peaks in the GC chart. The last reaction corresponds to oxidative hydrolysis of ethyl vinyl ether. Those olefins having bulky (a-methylstyrene, j8-methylstyrene, and allylbenzene) or electon-withdrawing substituents (1-bromo-l-propene, 1-chloro-l-pro-pene, fumalonitrile, acrylonitrile, and methylacrylate) are not oxidized. [Pg.410]

Direct Oxidation. Direct oxidation of petroleum hydrocarbons has been practiced on a small scale since 1926 methanol, formaldehyde, and acetaldehyde are produced. A much larger project (29) began operating in 1945. The main product of the latter operation is acetic acid, used for the manufacture of cellulose acetate rayon. The oxidation process consists of mixing air with a butane-propane mixture and passing the compressed mixture over a catalyst in a tubular reaction furnace. The product mixture includes acetaldehyde, formaldehyde, acetone, propyl and butyl alcohols, methyl ethyl ketone, and propylene oxide and glycols. The acetaldehyde is oxidized to acetic acid in a separate plant. Thus the products of this operation are the same as those (or their derivatives) produced by olefin hydration and other aliphatic syntheses. [Pg.295]

In addition to the cr-v equilibrium, an exchange between the n complex (45) and free acetaldehyde has been demonstrated using, 4C-labeled acetaldehyde (46, 48). After 45 hours at room temperature, 0.46% exchange was observed. While this appears quite small, one must remember that the free vinyl alcohol/acetaldehyde ratio has been estimated to have an upper limit of only 10-7 and that in the Wacker Process the equilibrium between 7r-coordinated and free vinyl alcohol would be shifted considerably in favor of free vinyl alcohol by the overpressure of ethylene. Thus, the behavior of the ir-vinyl alcohol complexes (45) and (48) seem to support the importance of such complexes as intermediates in the Wacker and similar olefin oxidation processes. [Pg.244]

Olefin oxidation with an aqueous palladium chloride solution according to eqs. (2)-(4) occurs stoichiometrically. A catalytic reaction is only possible if the metallic palladium can be reoxidized immediately. With gaseous oxygen, conditions to oxidize even finely divided palladium black are not optimal. However, metal salts such as cupric and ferric chlorides, chromates, heteropoly acids of phosphoric acid with molybdic and vanadic acids, or other oxidants - e. g., ben-zoquinone is used in kinetic investigations [10] - are suitable for reoxidation of the palladium metal. This fact explains the increase of the yield of acetaldehyde in the first experiments of the Consortium carried out in the presence of cupric and ferric chlorides, as mentioned above. [Pg.388]

Glycol derivatives, e.g., 2-chloroethanol (eq. (31)) are to a small extent byproducts in the technical olefin oxidation. With a very high concentration (ca. 5 mol/L) of cupric chloride and high pressure, 2-chloroethanol is the main product of ethylene oxidations, besides some acetaldehyde [33]. Cupric chloride is essential. In its absence, in spite of a high chloride ion concentration absolutely no 2-chloroethanol is obtained. It is assumed that analogously to acetaldehyde formation a y9-hydroxyethyl species bonded to a bi- or oligo-Pd-Cu cluster is an intermediate from which 2-chloroethanol is liberated by reductive elimination. [Pg.402]

Acetoxylations (oxyacylations) have to be seen in context with olefin oxidation to carbonyl compounds (Wacker process, Section 2.4.1). With the lowest olefin, ethylene, acetaldehyde is formed. In water-free acetic acid no reaction takes place. Only in the presence of alkali acetates - the acetate ion shows higher nu-cleophilicity than acetic acid - ethylene reacts with palladium salts (eq. (1)) to give vinyl acetate, the expected product, as first reported by Moiseev et al. [1]. Stem and Spector [2] independently used [HP04] as base in a mixture of isooctane and acetic acid. This reaction could be exploited for a commercial process to produce vinyl acetate and closed the last gap replacing acetylene by the cheaper ethylene, a petrochemical feed material, for the production of large-tonnage chemical intermediates. [Pg.1323]

The most important and extensively studied Pd(II) catalyzed olefin oxidation is the conversion of ethylene to acetaldehyde, which is best known as the Wacker Process [129,130]. The field has been reviewed several times [131-136] and a comprehensive treatise by Henry is also available [137]. [Pg.134]

Hydroboration of cyclic 1,3-dienes also results into three major types of or-ganoboranes [4] allylboranes, homoallylboranes, and dibora species. As usual oxidation of cyclic allylboranes also produces olefins rather than allylic alcohols, the allylboranes are indirectly estimated by reacting them with acetaldehyde to derivatized product, before oxidation. Homoallylic and dibora species are inert to acetaldehyde. The oxidation of derivatized product affords homoallylic alcohols, which estimate the amount of allylborane. The amount of underiva-tized homoallylic alcohol indicates the percentage of homoallylborane, and the amount of unreacted dienes gives the amount of dihydroboration (0% diene = 0% dihydroboration, 50% diene = 100% dihydroboration). [Pg.129]

This oxidation process for olefins has been exploited commercially principally for the production of acetaldehyde, but the reaction can also be apphed to the production of acetone from propylene and methyl ethyl ketone [78-93-3] from butenes (87,88). Careflil control of the potential of the catalyst with the oxygen stream in the regenerator minimises the formation of chloroketones (94). Vinyl acetate can also be produced commercially by a variation of this reaction (96,97). [Pg.52]

Oxidative Carbonylation of Ethylene—Elimination of Alcohol from p-Alkoxypropionates. Spectacular progress in the 1970s led to the rapid development of organotransition-metal chemistry, particularly to catalyze olefin reactions (93,94). A number of patents have been issued (28,95—97) for the oxidative carbonylation of ethylene to provide acryUc acid and esters. The procedure is based on the palladium catalyzed carbonylation of ethylene in the Hquid phase at temperatures of 50—200°C. Esters are formed when alcohols are included. Anhydrous conditions are desirable to minimize the formation of by-products including acetaldehyde and carbon dioxide (see Acetaldehyde). [Pg.156]

The direct oxidation of ethylene is used to produce acetaldehyde (qv) ia the Wacker-Hoechst process. The catalyst system is an aqueous solution of palladium chloride and cupric chloride. Under appropriate conditions an olefin can be oxidized to form an unsaturated aldehyde such as the production of acroleia [107-02-8] from propjiene (see Acrolein and derivatives). [Pg.472]

Another attractive commercial route to MEK is via direct oxidation of / -butenes (34—39) in a reaction analogous to the Wacker-Hoechst process for acetaldehyde production via ethylene oxidation. In the Wacker-Hoechst process the oxidation of olefins is conducted in an aqueous solution containing palladium and copper chlorides. However, unlike acetaldehyde production, / -butene oxidation has not proved commercially successflil because chlorinated butanones and butyraldehyde by-products form which both reduce yields and compHcate product purification, and also because titanium-lined equipment is required to withstand chloride corrosion. [Pg.489]

Compared with these methods, the palladium-catalyzed oxidation of 1-olefins described here is more convenient and practical. The industrial method of ethylene oxidation to acetaldehyde using PdCl2-CuCl 2-O2 original reaction of this type. The oxidation of various olefins has been carried out. ... [Pg.11]

Pd2+ salts are useful reagents for oxidation reactions of olefins. Formation of acetaldehyde from ethylene is the typical example. Another reaction is the formation of vinyl acetate by the reaction of ethylene with acetic acid (16, 17). The reaction of acetic acid with butadiene in the presence of PdCl2 and disodium hydrogen phosphate to give butadienyl acetate was briefly reported by Stem and Spector (110). However, 1-acetoxy-2-butene (49) and 3-acetoxy-l-butene (50) were obtained by Ishii and co-workers (111) by simple 1,2- and 1,4-additions using PdCl2/CuCl2 in acetic acid-water (9 1). [Pg.181]

The reaction occurs rapidly in an aqueous solution at mild temperatures (290-350 K) with a high yield of acetaldehyde and evolution of 220 kJ mol-1 of heat. Other olefins can be oxidized to subsequent aldehyde or ketone (see Table 10.10). [Pg.419]

Such stability is only relative, however, given the possibility of the acid-catalyzed 1,2-shift of a proton observed in some olefin epoxides of general structure 10.10 (Fig. 10.3) [12], Such a reaction occurs in the in vivo metabolism of styrene to phenylacetic acid the first metabolite formed is styrene oxide (10.10, R = Ph, Fig. 10.3, also 10.6), whose isomerization to phenyl-acetaldehyde (10.11, R = Ph, Fig. 10.3) and further dehydrogenation to phenylacetic acid has been demonstrated by deuterium-labeling studies. A com-... [Pg.611]

Double bonds characterize the basic building blocks of the petrochemical business. Ethylene, for example, is the chemical compound used to make vinyl chloride, ethylene oxide, acetaldehyde, ethyl alcohol, styrene, alpha olefins, and polyethylene, to name only a few. Propylene and benzene, the other big-volume building blocks, also have the characteristic double bonds. [Pg.5]

Alkanes n-butene, isopentane, isooctane Cydoalkanes t dohezane, methylcyclopentane Olefins (sometimes called alkenes ) ethylene, propylene, butene Cydoolefins ( clohezene Alkynes acetylene Aromatics toluene, i ene CHLORINATED HYDROCARBONS ALDEHYDES, RCHO formaldehyde, acetaldehyde KETONES, RCX R " acetone, methylethylketone NITRIC OXIDE, NO ... [Pg.15]

Propylene Ethylene Oxide Ethylene Dichloride Ethyl Benzene Ethyl Alcholni Acetaldehyde normal alcohols alpha olefins Ethyl Chloride Copolymers... [Pg.13]

Pd/Cu zeolite Y associations were found to be selective catalysts for oxidation of olefins in the presence of steam at temperatures ranging from 373 to 433K [22-30]. Acetone and acetaldehyde were obtained by propylene and ethylene oxidation, with selectivities of at least 90%. Neither Pd/Y nor Cu/Y showed good activity in these reactions. The conversion of different olefins under the same experimental conditions decreases in the following order [23] ethylene > propylene > 1-butene > cis-2-butene - trans-2-butene. [Pg.228]

Palladium chloride or the chloropalladite ion catalyze the oxidation of olefins to aldehydes or ketones, presumably by forming unstable palladium-olefin complex intermediates 196). A reaction of great industrial importance is the palladium chloride/cupric chloride catalyzed oxidation of ethylene to acetaldehyde 195). The first stage is presumably the oxidative hydrolysis of ethylene,... [Pg.98]

The oxidative hydrolysis and acetylation of olefins in the presence of palladium(II) salts are well-established as commercial routes to acetaldehyde and vinylacetate (46). Both processes have been investigated using supported catalysts. The oxidative hydrolysis has been briefly studied using palladium(ll) chloride supported on a cross-linked polystyrene resin containing cyano groups (64). Oxidative acetylation was effected using palladium(II) chloride supported on phosphinated silica (5). [Pg.228]

Monosubstituted and 1,2-disubstituted olefins can be oxidized to aldehydes and ketones by palladium chloride and similar salts of noble metals.367 1,1-Disubstituted olefins generally give poor results. The reaction is used industrially to prepare acetaldehyde from ethylene... [Pg.1196]

Two selective processes are important in the oxidation of ethylene the production of ethylene oxide and acetaldehyde. The first process is specifically catalyzed by silver, the second one by palladium-based catalysts. Silver catalysts are unique and selective for the oxidation of ethylene. No similar situation exists for higher olefins. The effect of palladium catalysts shows a resemblance to the liquid phase oxidation of ethylene in the Wacker process, in which Pd—C2H4 coordination complexes are involved. The high selectivity of the liquid phase process (95%), however, is not matched by the gas phase route at present. [Pg.126]

Hydration means, in general, addition of the elements of water to a substance. Most of these reactions are non-catalytic or homogeneously catalysed processes. In this section, only hydration of olefins to alcohols, of acetylene to acetaldehyde, and of alkene oxides to glycols will be treated, since they are typical reactions where the application of solid catalysts has become important. [Pg.321]

In the last stages of hydrocarbon oxidation, by both the low and high temperature mechanism, when the oxygen concentration is low, a new phenomenon appears—the pic darret. The methodical study of the reaction of propane and oxygen at various pressures, temperatures, and concentrations indicates three different aspects of the slow oxidation. When the pic d arret occurs, the analysis of some reaction products indicates an increase in the amounts of methane, ethane, acetaldehyde, ethyl alcohol, propyl alcohol, and especially isopropyl alcohol, and a decrease in the formation of hydrogen peroxide and olefin. All these results are explained by radical reactions such as R + R02 (or H02) ROOR - 2 RO oxygenated products and R + R - RR. [Pg.115]

Bawn and Skirrow (6) found that formaldehyde reduced the induction period in the gas phase oxidation of the simpler olefins such as propylene, 2-butene, and 1-hexene. Data for propylene are given in Table II. An analysis of the products from the reaction of 50 mm. of propylene and 140 mm. of oxygen at 340° C. gave the ratio of formaldehyde to total aldehyde to peroxide as 3 to 25 to 5 after a 7-minute induction period. 2-Butene, oxidized at 290° C. and a total pressure of 82.5 mm., gave formaldehyde, acetaldehyde, and acrolein as the aldehydic products, with formaldehyde, as in the case of propylene, appearing in relatively small amounts. [Pg.63]

The most common oxidation state of palladium is H-2 which corresponds toa electronic configuration. Compounds have square planar geometry. Other important oxidation states and electronic configurations include 0 ( °), which can have coordination numbers ranging from two to four and is important in catalytic chemistry, and +4 (eft), which is octahedral and much more strongly oxidizing than platinum (IV). The chemistry of palladium is similar to that of platinum, but palladium is between 103 to 5 x 10s more labile (192). A primary industrial application is palladium-catalyzed oxidation of ethylene (see Olefin polymers) to acetaldehyde (qv). Palladium-catalyzed carbon—carbon bond formation is an important organic reaction. [Pg.182]


See other pages where Acetaldehyde olefin oxidation is mentioned: [Pg.12]    [Pg.503]    [Pg.407]    [Pg.217]    [Pg.169]    [Pg.182]    [Pg.195]    [Pg.247]    [Pg.272]    [Pg.70]    [Pg.240]    [Pg.10]    [Pg.21]    [Pg.2]    [Pg.298]    [Pg.131]    [Pg.124]    [Pg.201]    [Pg.157]    [Pg.205]   


SEARCH



Olefin oxide

Olefinations oxidative

Olefines, oxidation

Olefins, oxidation

Oxidation, acetaldehyde

Oxidative olefin

Oxidative olefination

© 2024 chempedia.info