Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Accuracy, physical

The basic requirements for the Mephisto model was satisfactory accuracy, that means prediction of amplitude, position and phase relation between the various signals, and short computation times, typically a few minutes for the simulation of a whole Cscan, compatible with an intensive use. These a priori contradictory characteristics have been contented by means of appropriate approximations based on physical considerations. [Pg.738]

Manual ultrasonic testing offers the advantages of low equipment cost combined with the flexibility of the human operator to provide good access and complex scanning capability. However, a total reliance on the capabilities of the ultrasonic technician to visualise the physical situation leads to a number of drawbacks, including lack of accuracy and consistency of defect size and location measurements, lack of verification that the required scan coverage has been fully achieved, and lack of consistency in flaw classification. A further disadvantage is that the ultrasonic data is not permanently recorded there is therefore no opportunity for the data to be re-examined at a later date if required. [Pg.765]

A highly readable account of early efforts to apply the independent-particle approximation to problems of organic chemistry. Although more accurate computational methods have since been developed for treating all of the problems discussed in the text, its discussion of approximate Hartree-Fock (semiempirical) methods and their accuracy is still useful. Moreover, the view supplied about what was understood and what was not understood in physical organic chemistry three decades ago is... [Pg.52]

Scaiming probe microscopies have become the most conspicuous surface analysis tecimiques since their invention in the mid-1980s and the awarding of the 1986 Nobel Prize in Physics [71, 72]- The basic idea behind these tecimiques is to move an extremely fine tip close to a surface and to monitor a signal as a fiinction of the tip s position above the surface. The tip is moved with the use of piezoelectric materials, which can control the position of a tip to a sub-Angstrom accuracy, while a signal is measured that is indicative of the surface topography. These tecimiques are described in detail in section BI.20. [Pg.310]

Computational solid-state physics and chemistry are vibrant areas of research. The all-electron methods for high-accuracy electronic stnicture calculations mentioned in section B3.2.3.2 are in active development, and with PAW, an efficient new all-electron method has recently been introduced. Ever more powerfiil computers enable more detailed predictions on systems of increasing size. At the same time, new, more complex materials require methods that are able to describe their large unit cells and diverse atomic make-up. Here, the new orbital-free DFT method may lead the way. More powerful teclmiques are also necessary for the accurate treatment of surfaces and their interaction with atoms and, possibly complex, molecules. Combined with recent progress in embedding theory, these developments make possible increasingly sophisticated predictions of the quantum structural properties of solids and solid surfaces. [Pg.2228]

Isolated Linear Molecule Figure 6 shows the error in total energy for an isolated linear molecule H-(-C=C-)5-H. It is obvious that for the same level of accuracy, the time step in the SISM can be ten times or more larger as in the LFV. Furthermore, the LFV method is stable for only very short time steps, up to 5 fs, while the SISM is stable even for a time step up to 200 fs. However, such large time steps no longer represent physical reality and arc a particular property identified with linear molecules without bending or torsional intramolecular interactions. [Pg.345]

Properties that come foremost to mind to represent a compound are physical ones, because most of them can be measured easily and with high accuracy. Clearly, the more properties are used to characterize a compound, the better a model can be established for the prediction of the property of interest. Furthermore, one should select such properties which one knows or assumes to have a strong influence on the property that one wants to predict. [Pg.431]

The accuracy of a molecular mechanics or seim-eni pineal quantum mechanics method depends on the database used to parameterize the method. This is true for the type of molecules and the physical and chemical data in the database. Frequently, these methods give the best results for a limited class of molecules or phen omen a. A disad van tage of these methods is that you m u si have parameters available before running a calculation. Developing param eiers is time-consuming. [Pg.21]

Lsc th e force fields th at have dern on strated accuracy for particu lar molecules or simulations. For example, CiPLS reproduces physical properties in liquid simulations extremely well. MM+ reproduces the structure and thermodynamic properties of small, nonpolar molecules better than AMBER, BIO+, and OPLS. [Pg.103]

In the earlier versions of the streamline upwinding scheme the modified weight function was only applied to the convection tenns (i.e. first-order derivatives in the hyperbolic equations) while all other terms were weighted in the usual manner. This is called selective or inconsistent upwinding. Selective upwinding can be interpreted as the introduction of an artificial diffusion in addition to the physical diffusion to the weighted residual statement of the differential equation. This improves the stability of the scheme but the accuracy of the solution declines. [Pg.54]

National Institute of Standards and Technology (NIST). The NIST is the source of many of the standards used in chemical and physical analyses in the United States and throughout the world. The standards prepared and distributed by the NIST are used to caUbrate measurement systems and to provide a central basis for uniformity and accuracy of measurement. At present, over 1200 Standard Reference Materials (SRMs) are available and are described by the NIST (15). Included are many steels, nonferrous alloys, high purity metals, primary standards for use in volumetric analysis, microchemical standards, clinical laboratory standards, biological material certified for trace elements, environmental standards, trace element standards, ion-activity standards (for pH and ion-selective electrodes), freezing and melting point standards, colorimetry standards, optical standards, radioactivity standards, particle-size standards, and density standards. Certificates are issued with the standard reference materials showing values for the parameters that have been determined. [Pg.447]

Inferred reserves are producible, but the assumption of their presence is based on limited physical evidence and considerable geologic extrapolation. This places them on the borderline of being considered undiscovered, and the accuracy of the estimate is very poor. [Pg.217]

Process Measurements. The most commonly measured process variables are pressures, flows, levels, and temperatures (see Flow LffiASURELffiNT Liquid-levell asurel nt PressureLffiASURELffiNT Temperaturel asurel nt). When appropriate, other physical properties, chemical properties, and chemical compositions are also measured. The selection of the proper instmmentation for a particular appHcation is dependent on factors such as the type and nature of the fluid or soHd involved relevant process conditions rangeabiHty, accuracy, and repeatabiHty requited response time installed cost and maintainabiHty and reHabiHty. Various handbooks are available that can assist in selecting sensors (qv) for particular appHcations (14—16). [Pg.65]

Validation and Application. VaUdated CFD examples are emerging (30) as are examples of limitations and misappHcations (31). ReaUsm depends on the adequacy of the physical and chemical representations, the scale of resolution for the appHcation, numerical accuracy of the solution algorithms, and skills appHed in execution. Data are available on performance characteristics of industrial furnaces and gas turbines systems operating with turbulent diffusion flames have been studied for simple two-dimensional geometries and selected conditions (32). Turbulent diffusion flames are produced when fuel and air are injected separately into the reactor. Second-order and infinitely fast reactions coupled with mixing have been analyzed with the k—Z model to describe the macromixing process. [Pg.513]

Physical Properties. The physical properties of cmde tars vary over a wide range. Investigation has been mainly concerned with estabHshing correlations between the more readily deterrnined chemical and physical properties of the distillate oils and residual pitch, and other properties. Based on the correlations, other properties can be predicted with an accuracy sufficient for such purposes as plant design (Table 4). [Pg.341]

The physical piopeities of ethyl chloiide aie hsted in Table 1. At 0°C, 100 g ethyl chloride dissolve 0.07 g water and 100 g water dissolve 0.447 g ethyl chloride. The solubihty of water in ethyl chloride increases sharply with temperature to 0.36 g/100 g at 50°C. Ethyl chloride dissolves many organic substances, such as fats, oils, resins, and waxes, and it is also a solvent for sulfur and phosphoms. It is miscible with methyl and ethyl alcohols, diethyl ether, ethyl acetate, methylene chloride, chloroform, carbon tetrachloride, and benzene. Butane, ethyl nitrite, and 2-methylbutane each have been reported to form a binary azeotrope with ethyl chloride, but the accuracy of this data is uncertain (1). [Pg.1]

Distillation appHcations can be characterized by the type of materials separated, such as petroleum appHcations, gas separations, electrolyte separations, etc. These appHcations have specific characteristics in terms of the way or the correlations by which the physical properties are deterrnined or estimated the special configurations of the process equipment such as having side strippers, multiple product withdrawals, and internal pump arounds the presence of reactions or two Hquid phases etc. Various distillation programs can model these special characteristics of the appHcations to varying degrees and with more or less accuracy and efficiency. [Pg.78]

Zinc coatings are covered by an ASTM specification (143). Because of the varying purity of 2inc deposits from chloride and 2incate baths, some thickness measuring methods can vary considerably (39). Methods based on physical measurement of magnetic methods (144,145) are used for best accuracy. [Pg.165]

Critica.1 Properties. Several methods have been developed to estimate critical pressure, temperature, and volume, U). Many other properties can be estimated from these properties. Error propagation can be large for physical property estimations based on critical properties from group contribution methods. Thus sensitivity analyses are recommended. The Ambrose method (185) was found to be more accurate (186) than the Lyderson (187) method, although it is computationally more complex. The Joback and Reid method (188) is only slightly less accurate overall than the Ambrose method, and is more accurate for some specific substances. Other methods of lesser overall accuracy are also available (189,190) (T, (191,192) (T, P ),... [Pg.253]

It is assumed that process conditions and physical properties are known and the following are known or specified tube outside diameter D, tube geometrical arrangement (unit cell), shell inside diameter D shell outer tube limit baffle cut 4, baffle spacing and number of sealing strips N,. The effective tube length between tube sheets L may be either specified or calculated after the heat-transfer coefficient has been determined. If additional specific information (e.g., tube-baffle clearance) is available, the exact values (instead of estimates) of certain parameters may be used in the calculation with some improvement in accuracy. To complete the rating, it is necessary to know also the tube material and wall thickness or inside diameter. [Pg.1037]

Two principal topics are considered under theory of sampling. First is theoiy accounting for physical properties of material to be sampled. Second is the process of mechanical sample extrac tion. The theoiy predicts accuracy of sample taking—how much sample to take and howto take it to meet an accuracy specification. [Pg.1757]


See other pages where Accuracy, physical is mentioned: [Pg.973]    [Pg.973]    [Pg.69]    [Pg.686]    [Pg.956]    [Pg.2201]    [Pg.230]    [Pg.366]    [Pg.370]    [Pg.469]    [Pg.192]    [Pg.104]    [Pg.334]    [Pg.419]    [Pg.107]    [Pg.18]    [Pg.21]    [Pg.74]    [Pg.77]    [Pg.344]    [Pg.73]    [Pg.232]    [Pg.255]    [Pg.381]    [Pg.560]    [Pg.719]    [Pg.1136]    [Pg.2554]   
See also in sourсe #XX -- [ Pg.50 , Pg.209 ]




SEARCH



© 2024 chempedia.info