Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Accuracy, activity determination

For a trace element concentration to be certified by NBS, it must be determined by at least two independent methods, the results of which must agree within a small experimental error range of 1% to 10%, depending on the nature of the sample and the concentration level of the element. Such accuracy in determining some trace elements for certification of coal SRM is achieved most easily by NAA with radiochemical separation. Scientists at NBS have extensively tested a neutron activation method that involves a combustion separation procedure on coal as well as on several other matrices to be certified as standard reference materials. The procedures they have thus developed to determine mercury (12), selenium (13), and arsenic, zinc, and cadmium (14) are outlined in a following section on methods for determining specific elements in coal. [Pg.95]

Both the adsorption of neon and its surface flow are small. The accuracy of determining the activation energy for surface diffusion is therefore poor. An average value of 1250 cal. is calculated from the data in Figure 8. This value is considerably greater than RT, indicating that we do have activated diffusion and not a mobile film. [Pg.183]

Since, as in simple Michaelis-Menten kinetics, the reaction rate depends linearly on the enzyme concentration, the accuracy of activator determinations depends on the precision with which the enzyme concentration is known. Although it is not necessary to employ pure enzymes for the purpose of activator quantification, problems may arise if several isoenzymes exist of which only one is able to degrade the glycolipid substrate in the presence of the activator but all of them hydrolyze the artificial substrates employed for measuring the enzyme. This is, for example, the case for a-galactosidase, p-hexosaminidase, and arylsulfatase. In these cases separation of the isoenzymes, say by ion-exchange chromatography, is required. [Pg.6]

The desired compound in labelled form of known specific activity is added to a measured quantity of the mixture to be analysed. After equilibration, the substance is isolated in pure form and the specific activity determined. The degree of dilution obtained enables the amount of compound originally present in the mixture to be calculated. There are many situations where direct dilution analysis is unsuitable. The method requires an accurate determination of the specific activity and when the amount recovered falls to a fraction of a microgramme the accuracy falls off sharply because of the difficulty in measuring these amounts. However, the determination of radioactivity is both easy and accurate and such determinations serve, therefore, as a measure of the recovery of the purified compound. In any separation procedures, technical losses occur and the use of labelled compounds as internal standards represents one of the most widespread and important uses of radioisotopes. [Pg.170]

National Institute of Standards and Technology (NIST). The NIST is the source of many of the standards used in chemical and physical analyses in the United States and throughout the world. The standards prepared and distributed by the NIST are used to caUbrate measurement systems and to provide a central basis for uniformity and accuracy of measurement. At present, over 1200 Standard Reference Materials (SRMs) are available and are described by the NIST (15). Included are many steels, nonferrous alloys, high purity metals, primary standards for use in volumetric analysis, microchemical standards, clinical laboratory standards, biological material certified for trace elements, environmental standards, trace element standards, ion-activity standards (for pH and ion-selective electrodes), freezing and melting point standards, colorimetry standards, optical standards, radioactivity standards, particle-size standards, and density standards. Certificates are issued with the standard reference materials showing values for the parameters that have been determined. [Pg.447]

Instmmental methods such as atomic absorption and emission spectrometry, and gamma activation ate employed in most beryUium determinations however, gravimetric and tritrimetric methods remain useful when high accuracy is required. [Pg.68]

There are many types of phase diagrams in addition to the two cases presented here these are summarized in detail by Zief and Wilcox (op. cit., p. 21). Solid-liquid phase equilibria must be determined experimentally for most binaiy and multicomponent systems. Predictive methods are based mostly on ideal phase behavior and have limited accuracy near eutectics. A predic tive technique based on extracting liquid-phase activity coefficients from vapor-liquid equilib-... [Pg.1990]

A solvent free, fast and environmentally friendly near infrared-based methodology was developed for the determination and quality control of 11 pesticides in commercially available formulations. This methodology was based on the direct measurement of the diffuse reflectance spectra of solid samples inside glass vials and a multivariate calibration model to determine the active principle concentration in agrochemicals. The proposed PLS model was made using 11 known commercial and 22 doped samples (11 under and 11 over dosed) for calibration and 22 different formulations as the validation set. For Buprofezin, Chlorsulfuron, Cyromazine, Daminozide, Diuron and Iprodione determination, the information in the spectral range between 1618 and 2630 nm of the reflectance spectra was employed. On the other hand, for Bensulfuron, Fenoxycarb, Metalaxyl, Procymidone and Tricyclazole determination, the first order derivative spectra in the range between 1618 and 2630 nm was used. In both cases, a linear remove correction was applied. Mean accuracy errors between 0.5 and 3.1% were obtained for the validation set. [Pg.92]

X-ray structures are determined at different levels of resolution. At low resolution only the shape of the molecule is obtained, whereas at high resolution most atomic positions can be determined to a high degree of accuracy. At medium resolution the fold of the polypeptide chain is usually correctly revealed as well as the approximate positions of the side chains, including those at the active site. The quality of the final three-dimensional model of the protein depends on the resolution of the x-ray data and on the degree of refinement. In a highly refined structure, with an R value less than 0.20 at a resolution around 2.0 A, the estimated errors in atomic positions are around 0.1 A to 0.2 A, provided the amino acid sequence is known. [Pg.392]

The only statistical techniques which need control are those used to determine the acceptability of a product or service or the capability of a process that produces the product or service. Any activity where you rely on statistical evidence rather than physical measurement is an activity which should be governed by these requirements. The use of recognized techniques is important to the confidence one has in the result. It is similar to the use of measuring equipment that has been calibrated against known standards of accuracy. Unless you actually check every product, measure every attribute or variable you cannot be 100% certain. But that is costly and you can be 99.99% certain by using statistical techniques 99.99% may be sufficiently accurate for your needs. [Pg.547]

In the Nernst equation the term RT/nF involves known constants, and introducing the factor for converting natural logarithms to logarithms to base 10, the term has a value at a temperature of 25 °C of 0.0591 V when n is equal to 1. Hence, for an ion M+, a ten-fold change in ionic activity will alter the electrode potential by about 60 millivolts, whilst for an ion M2 +, a similar change in activity will alter the electrode potential by approximately 30 millivolts, and it follows that to achieve an accuracy of 1 per cent in the value determined for the ionic concentration by direct potentiometry, the electrode potential must be capable of measurement to within 0.26 mV for the ion M+, and to within 0.13 mV for the ion M2 +. ... [Pg.549]

Freezing point methods are often applied to the measurement of activities of electrolytes in dilute aqueous solution because the freezing point lowering, 6= T — T, can be determined with high accuracy, and the solute does not dissolve in the solid to any appreciable extent. Equations can be derivedgg relating a to 9 instead of T and T. The detailed expressions can be found in the literature.16... [Pg.309]

Boiling point measurements of sufficient accuracy to obtain reliable activities are not easy to make. It is difficult to ensure that equilibrium conditions are achieved in the still. As a result, boiling point measurements, unlike freezing point measurements, are not often used to determine these quantities. [Pg.309]

The precision of the rate constants as a function of temperature determines the standard deviations of the activation parameters. The absolute error, not the percentage error in the activation parameters, represents the agreement to the model, because of the exponential functions. If, for example, one wished to examine the values of AS for two reactions that were reported as -4 3 and 26 3 J mol 1K 1, then it should be concluded that the two are known to the same accuracy. Since AS and A// are correlated parameters, the uncertainty in AS will be about 1/Tav times that in A//. At ambient temperature this amounts to an approximate factor of three (that is, 1000/T, converting from joules for AS to kilojoules for A// ). Thus, the uncertainty in A//, 0 of 2.50 kJ mol 1 is consistent with the uncertainty in ASn of 7.21 J mol1 K-1 at Tav - 350 K. [Pg.158]

Note that a number of complicating factors have been left out for clarity For instance, in the EMF equation, activities instead of concentrations should be used. Activities are related to concentrations by a multiplicative activity coefficient that itself is sensitive to the concentrations of all ions in the solution. The reference electrode necessary to close the circuit also generates a (diffusion) potential that is a complex function of activities and ion mobilities. Furthermore, the slope S of the electrode function is an experimentally determined parameter subject to error. The essential point, though, is that the DVM-clipped voltages appear in the exponent and that cheap equipment extracts a heavy price in terms of accuracy and precision (viz. quantization noise such an instrument typically displays the result in a 1 mV, 0.1 mV, 0.01 mV, or 0.001 mV format a two-decimal instrument clips a 345.678. .. mV result to 345.67 mV, that is it does not round up ... 78 to ... 8 ). [Pg.231]

The extremely low rates of solution of polymers and the high viscosities of their solutions present serious problems in the application of the delicate calorimetric methods required to measure the small heats of mixing or dilution. This method has been applied successfully only to polymers of lower molecular weight where the rate of solution is rapid and the viscosity of the concentrated solution not intolerably great.22 The second method requires very high precision in the measurement of the activity in order that the usually small temperature coefficient can be determined with sufficient accuracy. [Pg.516]

The solvent s activity can be determined by measuring the saturation vapor pressure above the solution. Such measurements are rather tedious and their accuracy at concentrations below 0.1 to 0.5M is not high enough to produce reliable data therefore, this method is used only for concentrated solutions. The activity can also be determined from the freezing-point depression or boiling-point elevation of the solution. These temperature changes must be ascertained with an accuracy of about 0.0001 K, which is quite feasible. This method is used primarily for solutions with concentrations not higher than 1M. [Pg.112]

Numerous studies of broadband oxide semiconductors made in tiie form of a relatively thin monocrystal or a thin film sintered on a dielectric substrate revealed that if oxides ZnO, Ti02, SnC>2, CdO, or similar ones are used, it is possible to determine with sufficient accuracy trace concentrations of such active molecules, atoms and radicals as O2, CI2, Br2, J2, H2, H, N, O, OH, Cl, OH, Cl, CH3, CjHj, C3H7, NHj, NH as well as atoms of many metals (Na, Ag, Zn, Cd, Pb, Fe, Pd, Pt, etc.) without the need of prior activating adsorbates. [Pg.171]


See other pages where Accuracy, activity determination is mentioned: [Pg.347]    [Pg.675]    [Pg.280]    [Pg.575]    [Pg.423]    [Pg.163]    [Pg.127]    [Pg.390]    [Pg.257]    [Pg.289]    [Pg.288]    [Pg.342]    [Pg.1260]    [Pg.199]    [Pg.383]    [Pg.288]    [Pg.459]    [Pg.285]    [Pg.345]    [Pg.414]    [Pg.381]    [Pg.142]    [Pg.133]    [Pg.565]    [Pg.322]    [Pg.399]    [Pg.101]    [Pg.66]    [Pg.70]    [Pg.60]    [Pg.102]   
See also in sourсe #XX -- [ Pg.123 ]




SEARCH



Accuracy determination

Accuracy, activity determination standard addition method

Accuracy, determining

Activators determination

Activity determination

© 2024 chempedia.info