Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolites redox molecular sieve

An extremely versatile catalyst for a variety of synthetically useful oxidations with aqueous hydrogen peroxide is obtained by isomorphous substitution of Si by Ti in molecular sieve materials such as silicalite (the all-silica analogue of zeolite ZSM-5) and zeolite beta. Titanium(IV) silicalite (TS-1), developed by Enichem (Notari, 1988), was the progenitor of this class of materials, which have become known as redox molecular sieves (Arends et al., 1997). [Pg.35]

Whilst the majority of the discussion thus far has been concerned with metallo-substituted redox molecular sieves, it is important to note that proto-nated zeolite forms can also be employed for selective oxidation with aqueous hydrogen peroxide. An excellent example of this is the study conducted by the Mobil Oil Corporation.52 Their work has shown that a number of protonated zeolites such as H-ZSM-5 or zeolite-/ can be used with hydrogen peroxide to catalyse the oxidation of cyclic ketones to lactones or the co-hydroxycarboxylic acids (Figure 4.12). [Pg.195]

Unfortunately, the use of TS1 (as well as TS2 discovered in 1990 by the group of Ratnasamy (27)) in catalytic oxidations is restricted to the relatively small substrates able to enter the pores of these zeolites (apertures 0.55 nm). Therefore, many research groups attempted to incorporate titanium in large pore molecular sieves BEA zeolites, mesoporous molecular sieves MCM41 and MCM48. Other transition metal zeolites were also synthesized and tested in oxidation one of the main problems of these systems is the release of redox cations in liquid phase (24). Progress remains to be made to develop molecular sieves catalyzing the oxidation... [Pg.13]

TS-1 was the prototype of a new generation of solid, recyclable catalysts for selective liquid phase oxidations, which we called redox molecular sieves [76]. A more recent example is the tin(IV)-substituted zeolite beta, developed by Cor-ma and coworkers [77], which was shown to be an effective, recyclable catalyst... [Pg.21]

Supported metal oxide catalysts are a new class of catalytic materials that are excellent oxidation catalysts when redox surface sites are present. They are ideal catalysts for investigating catalytic molecular/electronic structure-activity selectivity relationships for oxidation reactions because (i) the number of catalytic active sites can be systematically controlled, which allows the determination of the number of participating catalytic active sites in the reaction, (ii) the TOP values for oxidation studies can be quantitatively determined since the number of exposed catalytic active sites can be easily determined, (iii) the oxide support can be varied to examine the effect of different types of ligand on the reaction kinetics, (iii) the molecular and electronic structures of the surface MOj, species can be spectroscopically determined under all environmental conditions for structure-activity determination and (iv) the redox surface sites can be combined with surface acid sites to examine the effect of surface Bronsted or Lewis acid sites. Such fundamental structure-activity information can provide insights and also guide the molecular engineering of advanced hydrocarbon oxidation metal oxide catalysts such as supported metal oxides, polyoxo metallates, metal oxide supported zeolites and molecular sieves, bulk mixed metal oxides and metal oxide supported clays. [Pg.496]

The demonstration by Enichem workers [1] that titanium silicalite (TS-1) catalyzes a variety of synthetically useful oxidations with 30% aqueous hydrogen was a major breakthrough in the field of zeolite catalysis [2], The success of TS-1 prompted a flourish of activity in the synthesis of other titanium-substituted molecular sieves, such as titanium silicalite-2 (TS-2) [3], Ti-ZSM-48 [4] Ti-Al-mordenite [5], Ti-Al-beta [6]and Ti-MCM-41 [7]. Moreover, this interest has also been extended to the synthesis of redox molecular sieves involving framework substitution by other metals, e.g. chromium, cobalt, vanadium, etc. [8]. [Pg.163]

The finding of an active solid redox system resulted in a flourish of activity in the development and application of diverse redox molecular sieves containing titanium (IV) and other metal ions [378-380]. Like the earlier ion-exchanged zeolites, many of the resulting catalysts, however, also suffered from loss by leaching, even when the redox element was substituted in the framework [102]. Ti-substituted zeolites remain special because of then stability. [Pg.42]

The discovery, in the mid-eighties, of the remarkable activity of TS-1 as a catalyst for selective oxidations with aqueous H2O2 fostered the expectation that this is merely the progenitor of a whole family of redox molecular sieve catalysts with unique activities. However, the initial euphoria has slowly been tempered by the realization that framework substitution/attachment of redox metal ions in molecular sieves does not, in many cases, lead to a stable heterogeneous catalyst. Nevertheless, we expect that the considerable research effort in this area, and the related zeolite-encapsulated complexes, will lead to the development of synthetically usefril systems. In this context the development of chiral ship-in-a-bottle type catalysts for intrazeolitic asymmetric oxidation is an important goal. Such an achievement would certainly justify the appellation mineral enzyme . [Pg.171]

Since 1980, the applications zeolites and molecular sieves in the speciality and fine chemicals increased enormously. Zeolites are being used in the various types of reactions like cyclization, amination, rearrangement, alkylation, acylations, ammoxidation, vapour and liquid phase oxidation reactions. Zeolites and molecular sieves have also been used to encapsulate catalytically active co-ordination complexes like ship-in-bottle and as a support for photocatalytic materials and chiral ligands. Redox molecular sieves have been developed as an important class of liquid and vapour phase oxidation and ammoxidation reactions. We have discussed few typical recent examples of various types of reactions. [Pg.151]

Zeolites, molecular sieves, speciality chemicals, fine chemicals, redox molecular sieves, ship-in-bottle. [Pg.151]

Another option that sometimes enables immobilization of isolated metal ions stable to leaching, and avoidance of the formation of oligomers, is the synthesis of zeolites or zeotypes containing isolated metal ions in framework positions. In these the oxidation properties of the metal atoms are associated with the main characteristics of zeolites which involve shape-selective effects and unique adsorption properties which can be tuned in terms of their hydrophobicity-hydrophi-licity, enabling selection of the proportions of reactants with different polarities that will be adsorbed in the pores. Researchers at ENI succeeded in introducing Ti into silicalite producing the TS-1 redox molecular sieve oxidation catalyst [64]. TS-1 has an MFI structure formed by a bidimensional system of channels with 0.53 nm X 0.56 nm and 0.51 nm X 0.51 nm pore dimensions. The incorporation of Ti into the framework has been demonstrated by use of several techniques-XRD, UV-visible spectrophotometry, EXAFS-XANES a good review has been published by Vayssilov [65]. [Pg.87]

High activity and selectivity, mildness, and cleanliness are typical aspects of catalysis by redox molecular sieves. Their potential, however, in the hydroxylation of large aromatic molecules is still undefined. The latest studies still concentrate on simple aromatic compounds, chiefly phenol, benzene, and their alkylated derivatives, with limited relevance to fine chemicals, and largely involve the use of mi-croporous zeolites. Few studies relate to large-pore and mesoporous catalysts, potentially valuable in the oxidation of complex molecules. Reasons might possibly be the relative youth of redox molecular sieves, mostly at the stage of material optimization, and the lower activity of mesoporous catalysts. The latter is a major problem, as already shown for Ti-molecular sieves, for which only partial solutions have been proposed. [Pg.549]

One approach to creating heterogeneous oxidation catalysts with novel activities and selectivities is to incorporate redox metals, by isomorphous substitution, into the lattice framework of zeolites and related molecular sieves. Site-isolation of redox metals in inorganic lattices prevents the dimerization or oligomerization of active oxometal species which is characteristic of many homogeneous oxometal complexes and leads to their deactivation in solution. We coined the term redox molecular sieves to describe such catalysts . The first and most well-known example is titanium silicalite (TS-1) which has been shown to catalyze a variety of systhetically useful oxidations with H202. ... [Pg.455]

Incorporating redox catalytic sites within a zeolite lattice framework should also provide a basis for effecting shape selective oxidations. Indeed, it has recently been reported67 that TS-1 catalyzes the shape selective oxidation of alkanes with 30% H202. Linear alkanes were oxidized much faster than branched or cyclic alkanes, presumably as a result of the molecular sieving action of TS-i. The products were the corresponding alcohols and ketones formed by oxidation at the 2- and 3-positions, e.g.,... [Pg.50]

Once the multi-step reaction sequence is properly chosen, the bifunctional catalytic system has to be defined and prepared. The most widely diffused heterogeneous bifunctional catalysts are obtained by associating redox sites with acid-base sites. However, in some cases, a unique site may catalyse both redox and acid successive reaction steps. It is worth noting that the number of examples of bifunctional catalysis carried out on microporous or mesoporous molecular sieves is not so large in the open and patent literature. Indeed, whenever it is possible and mainly in industrial patents, amorphous porous inorganic oxides (e.g. j -AEOi, SiC>2 gels or mixed oxides) are preferred to zeolite or zeotype materials because of their better commercial availability, their lower cost (especially with respect to ordered mesoporous materials) and their better accessibility to bulky reactant fine chemicals (especially when zeolitic materials are used). Nevertheless, in some cases, as it will be shown, the use of ordered and well-structured molecular sieves leads to unique performances. [Pg.158]

The reductive/oxidative properties of transitional metal elements in these zeolite catalysts were also examined by TPR and TPO, and it is shown that metallic species in certain cation locations may migrate under calcination, reduction, and reaction conditions [7], The different treatment, e g, coking or even the oxidative regeneration, will produce metallic species of varied oxidation states with different distributions in the molecular sieve structures as exemplified by the above XPS data. The redox properties of these metallic cations exhibit the influence of hydrogen and/or coke molecules, and it is further postulated that the electron transfer with oxygen species are considered responsible for their catalyzed performance in the TPO regeneration processes, as shown in Figure 2. [Pg.220]

Zeolitic materials have been widely used in the last decades in the chemical and petrochemical industries. This increasing interest on these materials is based in their unique properties a uniform intra-crystalline microporosity that provides aceess to a large and well-defined surface, the molecular sieve effect, and the electrostatic field centered at zeolite cations. Furthermore, some properties of zeolites can be tailored by changing the nature of the compensating cation located in the inner part of the cavities by means of their ion-exchange capability. In this way, the pore accessibility of some zeolites used in gas separation processes, as well as the adsorbent-adsorbate interactions, can be tailored by the introduction of cations with different size and chemical nature. Similarly, different cations can be used to introduce new chemical properties (acid-base, redox, etc.), which are needed for a given application in catalytic processes. [Pg.107]

The difficulty of incorporating metal ions into the molecular sieve lattice results from the fact that actually two requirements have to be fulfilled, i.e., (i) the metal cation must have approximately the size of the atom it replaces (Si, A1 or P) and (ii) it must be able to coordinate in a tetrahedral position in the firamework. Fiuthermore, to function as a successful redox catalyst, a change in the valency and/or the coordination of the oxidant must be realized via reversible change of the coordination of the metal cation. Only a limited number of cations have been reported to be incorporated in the fiamework of zeolite and metal-aluminophosphate molecular sieves. These cations include Co, V, Mn, Cr. Ti [158,159] and a short compilation of the structures available (isomorphously substituted molecular sieves) is compiled in Table 1. Generally, it seems that aluminophosphate lattices are more easily adaptable for isomorphous substitution, but that the resulting materials have a lower stability than the corresponding zeolite frameworks [160]. [Pg.385]

B. Wichterlova, J. Dedeak, and Z. Sobalik, Redox Catalysis over Molecular Sieves. Structure and Function-active Site. Proceedings of the 12th International Zeolite Conference, Part II, ed. M.M.J. Treacy, B.K. Marcus, M.E. Bisher, and J.B., Higgins MRS, Warrendale, PA, 1998 941-973. [Pg.18]

Since the incorporation of transition metals into the frameworks of zeolites or micro-porous ahiminophosphates to form heteroatom-containing molecular sieves with important application values, the synthesis, structure, and characterization of microporous transition metal phosphates have been extensively studied in the last decade. In particular, because transition metal cations possess redox and coordination features, they are a kind of catalytic material with useful applications, and promise potential... [Pg.194]

Following the success of TS-1 a variety of Ti-substituted molecular sieves were prepared by hydrothermal synthesis (Table 2) [28-32], Furthermore, various redox metals, e.g. V, Cr, Mn, Fe, Co, Cu, Zr, and Sn, have been reportedly incorporated into silicalites, zeolites,... [Pg.159]

The first successful preparation of micro/mesoporous or micro/macroporous molecular sieves as well as mesoporous zeolite single crystals started an intensive search of optimization procedures for their synthesis, to increase their thermal stability and to tailor their acid, base and redox properties for possible applications in heterogeneous catalysis. There is no doubt that mastering of synthesis of these hierarchic materials is an important challenge in the area of porous materials. [Pg.130]

A striking example of molecular sieving in a stable, continuous b-oriented silicalile-1 film (having pores of about 0.55 nm) on an electrode was recently demonstrated with redox probe molecules of different sizes (Fig. 13).[100] Specifically, the smaller complex Ru(NII3)63+ with a diameter of ca. 0.5 nm was shown to travel through the film, while the larger complex Co(phen)32+ with a diameter of ca. 1.3 nm was completely excluded from the zeolite film and thus from redox processes. [Pg.278]

The use of microporous solid catalysts such as zeolites and related molecular sieves has an additional benefit in organic synthesis. The highly precise organization and discrimination between molecules by molecular sieves endows them with shape-selective properties [12] reminiscent of enzyme catalysis. The scope of molecular sieve catalysis has been considerably extended by the discovery of ordered mesoporous materials of the M41S type by Mobil scientists [13,14]. Furthermore, the incorporation of transition metal ions and complexes into molecular sieves extends their catalytic scope to redox reactions and a variety of other transition metal-catalyzed processes [15,16]. [Pg.6]

The latter is analogous to the hydrothermal synthesis of zeolites and related molecular sieves (see later). Redox metal ions can be incorporated into acidic clays or zeolites by ion exchange, and oxoanions can be similarly exchanged into hydrotalcite-like anionic clays [30]. [Pg.7]

Alternatively, redox metal ions can be incorporated into framework positions of zeolites and related molecular sieves by hydrothermal synthesis or post-synthesis modifications [15]. A suitable choice of molecular sieve, with an appropriate pore... [Pg.7]

Isomorphous substitution of T element in a molecular sieve material is very interesting in order to modify its acidic or redox catalytic and shape selective properties. Different ways to perform such a substitution are now well established either during synthesis or post synthesis in( luding solid-solid reaction between the zeolite and another oxide. The substituted eliiment may be strongly or weakly bound to the framework i.e. may remain stable or may give rise to well dispersed metallic oxide particles entrapped in the cavities. This results in different catalytic properties and may even lead to bifunctional catalysis as for Ga-ZSM-5 material. [Pg.25]

The ease of the redox reactions of metal cations in the framework suggests that metal cations can be easily substituted into the framework of aluminophosphate molecular sieves. The changes in the coordination of Al ions in the framework by the adsorption of some gases such as H2 have also been reported by some researchers. This has not been observed for aluminosilicate zeolites. Although no investigation has been performed on the influence of the framework environment on the catalytic properties of aluminophosphate molecular sieves, there is a possibility that the restricted redox properties of metal cations in the framework catalyze reactions which proceed over free metal cations, as with oxides or ion-exchanged zeolites. [Pg.31]

Zeolites contain voids of molecular dimensions which permit molecular sieving. This feature is ideal for selective separation of compounds. Pores of molecular dimension with specific shapes will also enable size- and shape-selective processes in catalytic reactions. In addition, acid-base or redox properties needed for catalytic conversions are introduced in zeolites by isomorphous substitution of Si atoms in the crystalline framework by other elements such as Al, Ti, Ga, etc. [Pg.325]


See other pages where Zeolites redox molecular sieve is mentioned: [Pg.261]    [Pg.2809]    [Pg.163]    [Pg.151]    [Pg.157]    [Pg.158]    [Pg.825]    [Pg.220]    [Pg.181]    [Pg.27]    [Pg.239]    [Pg.262]    [Pg.547]    [Pg.222]    [Pg.27]    [Pg.369]    [Pg.15]    [Pg.3238]    [Pg.546]    [Pg.385]   
See also in sourсe #XX -- [ Pg.429 ]




SEARCH



Molecular sieves

Molecular sieves, zeolitic

Molecular sieving

Molecular zeolite

Redox molecular sieves

Redox zeolites

© 2024 chempedia.info