Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite catalyst composition

Uu, H.-C. (1985) Modified zeolite catalyst composition and process for alkylating toluene with methanol to form styrene. U.S. Patent 4, 499,318. [Pg.531]

Pyridine bases such as 3-picoline and MEP are predominantly manufactured by the Chichibabin reaction, where a mixture of aldehydes or ketones is reacted with ammonia. Thus, formaldehyde, acetaldehyde and ammonia react in the gas phase to produce a mixture of pyridine and 3-picoline. By choosing the appropriate aldehyde or ketone, catalyst and phase (liquid or gas phase), the composition of the mixture can be varied at will, depending on the desired end-product. In the gas phase, silica alumina catalysts are often used, while in the liquid phase acid catalysts based on phosphoric or acetic acid are employed. In the 1990s, Reilly patented MET and BEA-based zeolite catalyst compositions for ammonia-aldehyde conversions to pyridine, picolines and alkyl pyridines. [Pg.542]

A zeolite catalyst operated at 1 atm and 325-500 K is so active that the reaction approaches equilibrium. Suppose that stack gas having the equilibrium composition calculated in Example 7.17 is cooled to 500 K. Ignore any reactions involving CO and CO2. Assume the power plant burns methane to produce electric power with an overall efficiency of 70%. How much ammonia is required per kilowatt-hour (kWh) in order to reduce NO , emissions by a factor of 10, and how much will the purchased ammonia add to the cost of electricity. Obtain the cost of tank car quantities of anhydrous ammonia from the Chemical Market Reporter or from the web. [Pg.254]

A series of CoSx-MoSx/NaY catalysts was synthesized by intoducing Co(CO)3NO into MoSx/NaY evacuated at 673 K for 1 h, followed by second programmed sulfidation procedures. MoSx-CoSx/NaY catalysts were prepared in the reversed order of the metal sulfide accommodations into the zeolite cavities. When Co2(CO)g was used as the Co precursor, MoSx/NaY was impregnated with COj(CO)g dispersed in n-hexane, followed by evacuation at room temperature to remove the solvent. Co2(CO)g/MoSx/NaY was subsequently sulfided at 673 K to give CoSx/MoSx/NaY. The catalyst composition was determined by AAS and ICP. [Pg.504]

Ammoxidation of propane over Fe-zeolites effect of reaction variables, catalyst composition and catalyst structure... [Pg.397]

Partial recrystallization of zeolites into composite micro/mesoporous materials leads to 1,3-2 fold increase of n-octane conversion and 2-3 fold increase of the yield of target products - branched octanes, indicating improved accessibility of active sites and transport of bulky molecules provided by mesopores. In the case of BEA series recrystallization in mild conditions leads to remarkable increase in selectivity to i-octane from 40 to 67%. On the contrary, complete recrystallization results in low catalytic activity, comparable with MCM-41 catalyst. [Pg.416]

Introduction of zeolites into catalytic cracking improved the quality of the product and the efficiency of the process. It was estimated that this modification in catalyst composition in the United States alone saved over 200 million barrels of crude oil in 1977. The use of bimetallic catalysts in reforming of naphthas, a basic process for the production of high-octane gasoline and petrochemicals, resulted in great improvement in the catalytic performance of the process, and in considerable extension of catalyst life. New catalytic approaches to the development of synthetic fuels are being unveiled. [Pg.380]

Zeolite catalysts and adsorbents have also been incorporated into monolithic contactors by several routes, including extruded zeoHte/binder composites [70], wash-coated ceramic monoliths [71] and corrugated thin-sheet monoliths [72]. [Pg.69]

To clarify the mechanism by which gasoline composition is changed (reduction in concentration of the paraffins and an increase in concentration of olefins and aromatics) by ZSM-5 in the dual zeolite catalyst, experiments were carried out on catalysts containing only ZSM-5 dispersed in the matrix. The catalyst containing 1 Wt.% ZSM-5 was used in order to duplicate the concentration of ZSM-5 in the dual zeolite catalyst studied earlier. Experiments with the pure matrix catalyst were used to define the contribution of ZSM-5. [Pg.42]

There are three different kinds of octane catalysts in current use. Some are based in part on an active non-zeolite matrix composed of a porous silica/alumina component. Others are based on low cell size (2.425-2.428 nm) ultra stable faujasite (USY), a catalyst composition developed in 1975 (2) for the purpose of octane enhancement. A third catalyst system makes use of a small amount (1-2%) of ZSM-5 as an additive. While the net effect in all cases is an increase in the measured octane number, each of the three catalytic systems have different characteristic effects on the composition and yield of the gasoline. The effects of the ZSM-5 component on cracking is described in other papers of this symposium and will not be discussed here. [Pg.104]

Because BaO/NaX zeolite catalysts exhibited the best performance, further investigations have been carried out recently to characterize the oxidative methylation of toluene catalyzed by BaO-modified X- and Y-zeolites, mordenite, ZSM-5, sil-icalite, and ALPO4-5 (230). The authors found that activity and basicity of BaO-modified zeolites and zeolite-like catalysts depend on both the structural type and composition. Thus, for samples of the same structural type (BaO/NaX zeolite. [Pg.278]

Interconversion of isomeric xylenes is an important industrial process achieved by HF-BF3 or zeolite catalysts (see Section 4.5.2). Studies of xylenes and tri-and tetramethylbenzenes showed that the amount of catalyst used has a pronounced effect on the composition of isomeric mixtures.83 When treated with small amounts of HF-BF3, isomeric xylenes yield equilibrium mixtures (Table 4.2). Using a large excess of the superacid, however, o- and p-xylenes can be isomerized to m-xylene, which eventually becomes the only isomer. Methylbenzenes are well known to form stable a complexes (arenium ions) in superacids, such as HF-BF3. Since the most stable arenium ion formed in superacids is the 2,4-dimethylbenzenium ion (proto-nated m-xylene, 5), all other isomers rapidly rearrange into this ion. The equilibrium concentration of protonated m-xylene in the acidic phase, consequently, approaches 100%. [Pg.172]

The paper deals with some new data concerning the state of the metal after reduction and the catalytic functions of zeolite catalysts containing nickel and platinum. By using the molecular sieve selectivity in the hydrogenation of mesitylene it has been proved that metal (platinum) is contained in the volume of the zeolite crystal. The temperature dependence of the formation of nickel crystals was investigated. The aluminosilicate structure and the zeolite composition influence mainly the formation of the metal surface which determines the catalytic activity. In the hydrocracking of cumene and disproportionation of toluene a bifunctional action of catalysts has been established. Hydrogen retarded the reaction. [Pg.458]

The main objective in FCC catalyst design is to prepare cracking catalyst compositions which are active and selective for the conversion of gas-oil into high octane gasoline fraction. From the point of view of the zeolitic component, most of the present advances in octane enhancement have been achieved by introducing low unit cell size ultrastable zeolites (1) and by inclusion of about 1-2 of ZSM-5 zeolite in the final catalyst formulation (2). With these formulations, it is possible to increase the Research Octane Number (RON) of the gasoline, while only a minor increase in the Motor Octane Number (MON) has been obtained. Other materials such as mixed oxides and PILCS (3,4) have been studied as possible components, but there are selectivity limitations which must be overcome. [Pg.84]

To improve process economics, further work is needed to improve catalyst lifetimes. A more stable system employed a noble metal-loaded potassium L-zeolite catalyst for the condensation of ethanol with methanol to produce a 1-propanol and 2-methyl-l-propanol (US patent no. 5,300,695) (18). However, yields were small compared with the large amounts of CO and C02 produced from the methanol. More recently, Exxon patented a noble metal-loaded alkali metal-doped mixed metal (Zr, Mn, Zn) oxide (US patent nos. 6,034,141 and 5,811,602) (19,20). The catalyst was used in a syngas atmosphere. As with other catalysts, the higher temperatures resulted in decomposition of methanol. Changes in catalyst composition were noted at higher temperatures, but the stability of the catalyst was not discussed. Recently, compositions including Ni, Rh, Ru, and Cu were investigated (21,22). [Pg.916]

With zeolite catalysts it is possible to determine the coke composition, essential for the understanding of the modes of coke formation, of deactivation and of coke oxidation. As the micropores cause an easy retention of organic molecules through condensation, electronic interactions or steric blockage, the formation of coke molecules begins within these micropores. Their size is therefore limited by the size of channels, of cavities or of channel intersections. However the growth of coke molecules trapped in the cavities or at the channel intersections close to the outer surface of the crystallites leads to bulky polyaromatic molecules which overflow onto this outer surface. [Pg.66]

In most of the reactions discussed the active entity of the zeolite catalysts is introduced via ion exchange. Thus a knowledge of the possible siting of cations is a prerequisite for an understanding of the location and nature of the active sites in zeolites. In this respect the periodicity of the internal surface of the zeolites provides an almost unique opportunity to study the surface composition in considerable detail using powerful analytical methods such as X-ray diffraction. [Pg.6]

The foregoing discussion refers solely to intraparticle diffusivity (micropore diffusion) as distinct from interparticle effects (macropore diffusion). Since a practical zeolite catalyst will consist of composite particles, each containing a large number of individual zeolite crystals, it is important to make a clear distinction between these two types of diffusion. In some cases macropore diffusion may be important in determining the overall reaction kinetics but will obviously not introduce or affect shape selectivity in any way. [Pg.10]

The isomer ratios are often close to the equilibrium composition at the particular reaction temperature, indicating isomerization as well as dimerization catalytic activity. The two most extensively studied zeolite catalysts contain nickel and rhodium, incorporated via ion exchange, and will be discussed separately. [Pg.24]


See other pages where Zeolite catalyst composition is mentioned: [Pg.253]    [Pg.253]    [Pg.170]    [Pg.285]    [Pg.327]    [Pg.93]    [Pg.282]    [Pg.105]    [Pg.117]    [Pg.514]    [Pg.522]    [Pg.553]    [Pg.557]    [Pg.493]    [Pg.248]    [Pg.34]    [Pg.35]    [Pg.143]    [Pg.182]    [Pg.183]    [Pg.324]    [Pg.107]    [Pg.461]    [Pg.459]    [Pg.221]    [Pg.157]    [Pg.51]    [Pg.353]    [Pg.54]    [Pg.443]   
See also in sourсe #XX -- [ Pg.227 ]




SEARCH



Catalysts composition

Catalysts zeolitic

Composite catalysts

Zeolite catalyst

© 2024 chempedia.info