Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micro-mesoporous materials

With the combined methods of 29Si NMR spectroscopy, X-ray diffraction, HRTEM and SAED we were able to characterize the Ti-Beta particle growth. 29Si NMR spectroscopy gave us an opportunity to see the formation of nanoparticles even before they were detectable with other techniques such as XRD. The above mentioned techniques enabled us to obtain sufficient knowledge to prepare Ti-Beta nanoparticles which were than successfully incorporated in novel micro/mesoporous materials [1],... [Pg.68]

The development of composite micro/mesoporous materials opens new perspectives for the improvement of zeolytic catalysts. These materials combine the advantages of both zeolites and mesoporous molecular sieves, in particular, strong acidity, high thermal and hydrothermal stability and improved diffusivity of bulky molecules due to reduction of the intracrystalline diffusion path length, resulting from creation of secondary mesoporous structure. It can be expected that the creation of secondary mesoporous structure in zeolitic crystals, on the one hand, will result in the improvement of the effectiveness factor in hydroisomerization process and, on the other hand, will lead to the decrease of the residence time of products and minimization of secondary reactions, such as cracking. This will result in an increase of both the conversion and the selectivity to isomerization products. [Pg.413]

Partial recrystallization of zeolites into composite micro/mesoporous materials leads to 1,3-2 fold increase of n-octane conversion and 2-3 fold increase of the yield of target products - branched octanes, indicating improved accessibility of active sites and transport of bulky molecules provided by mesopores. In the case of BEA series recrystallization in mild conditions leads to remarkable increase in selectivity to i-octane from 40 to 67%. On the contrary, complete recrystallization results in low catalytic activity, comparable with MCM-41 catalyst. [Pg.416]

However, there have been only a few reports about the synthesis of the micro-mesoporous materials. Bekkum group have reported that the FAU zeolite overgrown with small content of... [Pg.107]

This study demonstrated that the micro-mesoporous composite materials could be synthesized with two-step treatment by microwave using two different templates system with TPABr and MTAB. This formation was controlled by the self-assembly formation of supramolecular templates between MTA micelles and SiO /TPA gels. As varying microwave irradiation time of micro-mesoporous materials, gradually transition from the mesophase to micro-mesophase was occurred. These materials have higher dm spacing of mesoporous materials and lead to transition from mesophase to micro-microphase by an increment of synthetic time, while the calcined products is formed with bimodal and trimodal pore size distribution under microwave irradiation within 3 h. From TG-DTA and PL analysis, the self-assembly formation of supramolecular templates between MTA+ micelles and SiO /TPA+ gels were monitored. [Pg.115]

Do, D.D. (1998). A new method for the characterisation of micro-mesoporous materials. Presented at the International Symposium on New Trends in Colloid and Interfiice Science, September 24—26, Chiba, Japan. [Pg.267]

Similar results are found for metal loaded samples. In each case (with or without metal), it is possible to find a pH interval that leads to micro-mesoporous materials after drying and pyrolysis. This pH interval is always very narrow. If the pH is lower than the inferior... [Pg.622]

The introduction of a metal salt (and a complexant) seems to have only a slight influence on the pH range that leads to micro-mesoporous material. [Pg.624]

The nitrogen adsorption-desorption isotherms at -196°C of zeolite samples before and after nitridation at different temperatures are presented in Fig. 3-a. All the isotherms possess the shape typical of micro-mesoporous materials. At low relative pressure (p/po < 0.02) a sharp rise is observed, which reveals the prevailing microporosity of the sample. For a relative pressure range between... [Pg.861]

At Si02/Al203 = 100 a borderline situation (micro-mesoporous material) is observed, underlining an effect of aluminum content. [Pg.409]

In order to overcome the limitations of individual micro- or mesoporous materials and to combine the advantages of these two types of molecular sieves, the synthesis of new molecular sieves incorporating porosity of both types presents a challenge. Several approaches and methods of synthesis of micro/mesoporous materials... [Pg.1626]

We suggest a model of adsorption in pores with amorphous and microporous solid walls, named the quenched solid non-local density functional theory (QSNLDFT) model. We consider a multicomponent non-local density functional theory (NLDFT), in which the solid is treated as a quenched component with a fixed spatially distributed density. Drawing on several prominent examples, we show that QSNLDFT model produces smooth Isotherms of mono- and polymolecular adsorption, which resemble experimental isotherms on amorphous surfaces. The model reproduces typical behaviors of N2 isotherms on micro- mesoporous materials, such as SBA-15. QSNLDFT model offers a systematic approach to the account for the surface roughness/heterogeneity in pore structure characterization methods. [Pg.9]

Grabowska et al. (2008) prepared a composite oxide ZnAl O by microwave-assisted hydrothermal treatment of a precursor mixture of lydroxides obtained by precipitation of aluminum and zinc nitrates. Various studies show that ZnAl O is nanosized and is a micro/mesoporous material with large a suifaee area (140 mVg). The gas phase catalytic methylation of 4-hydroxypyridine in the presence of the ZnAljO catalyst was performed in a continuous process at atmospherie pressure in the temperature range of 240-360 °C. A mixture of O- and N-alkylated products, namely 4-methoxypyridine and N-methyl-4-pyridone were obtained. The alkylation of 4-hydroxypyridine with methanol at 345 °C offered 87.6% selectivity towards N-methyl-4-pyiidone with about 89% 4-methoxypyridine conversioa... [Pg.102]

The previous sections have shown that desihcation of ZSM-5 zeohtes results in combined micro- and mesoporous materials with a high degree of tunable porosity and fuUy preserved Bronsted acidic properties. In contrast, dealumination hardly induces any mesoporosityin ZSM-5 zeolites, due to the relatively low concentration of framework aluminum that can be extracted, but obviously impacts on the acidic properties. Combination of both treatments enables an independent tailoring of the porous and acidic properties providing a refined flexibility in zeolite catalyst design. Indeed, desihcation followed by a steam treatment to induce dealumination creates mesoporous zeolites with extra-framework aluminum species providing Lewis acidic functions [56]. [Pg.43]

I 6 Oxidation Tools in the Synthesis of Catalysts and Related Functional Materials Table 6.1 Detemplation approaches of micro- and mesoporous materials. [Pg.134]

The second case study. This involves all silica micro- and mesoporous SBA-15 materials. SBA-15 materials are prepared using triblock copolymers as structure-directing templates. Typically, calcined SBA-15 displays pore sizes between 50 and 90 A and specific surface areas of 600-700 m g with pore volumes of 0.8-1.2cm g h Application of the Fenton concept to mesoporous materials looks simpler since mass transfer would be much less limited. However, it is not straightforward because hydrolysis can take place in the aqueous phase. [Pg.135]

Controlled and selective combustion of components via thermal or chemical routes Calcination. Thermal detemplation of organic templates in micro- and mesoporous materials. Chemical detemplation protocols. Solution combustion synthesis... [Pg.136]

Pore volumes are determined by forcing N2 (for micro- and mesoporous materials) or Hg (macroporous materials) under pressure into the pores. The quantity of N2 or Hg entering the catalyst is directly related to the pressure and the radius of the pores. The Kelvin equation describes this ... [Pg.89]

Some micro- and mesoporous materials exhibit anisotropic pore structures, which may yield different values for the diffusivities in the three orthogonal spatial directions. In such systems, the self-diffusion should be described by a diffusion tensor rather than by a single scalar self-diffusion coefficient. By measuring over a... [Pg.236]

Microporous nanoparticles with ordered zeolitic structure such as Ti-Beta are used for incorporation into walls or deposition into pores of mesoporous materials to form the micro/mesoporous composite materials [1-3], Microporous particles need to be small enough to be successfully incorporated in the composite structure. This means that the zeolite synthesis has to be stopped as soon as the particles exhibit ordered zeolitic structure. To study the growth of Ti-Beta particles we used 29Si solid-state and liquid-state NMR spectroscopy combined with x-ray powder diffraction (XRPD) and high-resolution transmission electron microscopy (HRTEM). With these techniques we monitored zeolite formation from the initial precursor gel to the final Ti-Beta product. [Pg.65]

V. Pashkova, K. Gora-Marek, L. Litynska-Dobrzynska, M. Derewihski, 2007 Proc. of Second Inter. Symp. Advanced Micro- and Mesoporous Materials , Varna, Bulgaria, in print... [Pg.96]

Methodology for the characterization of micro-mesoporous acidic materials... [Pg.217]

Acidic micro- and mesoporous materials, and in particular USY type zeolites, are widely used in petroleum refinery and petrochemical industry. Dealumination treatment of Y type zeolites referred to as ultrastabilisation is carried out to tune acidity, porosity and stability of these materials [1]. Dealumination by high temperature treatment in presence of steam creates a secondary mesoporous network inside individual zeolite crystals. In view of catalytic applications, it is essential to characterize those mesopores and to distinguish mesopores connected to the external surface of the zeolite crystal from mesopores present as cavities accessible via micropores only [2]. Externally accessible mesopores increase catalytic effectiveness by lifting diffusion limitation and facilitating desorption of reaction products [3], The aim of this paper is to characterize those mesopores by means of catalytic test reaction and liquid phase breakthrough experiments. [Pg.217]

Hydroisomerization of n-octane over Pt-containing micro/mesoporous catalysts obtained by recrystallization of zeolites BEA and MOR was investigated in the temperature range of 200-250 °C under 1-20 bar. Composite materials showed remarkably high activity and selectivity with respect to both pure microporous and pure mesoporous materials. The effect is due to high zeolitic acidity combined with improved accessibility of active sites and transport of bulky molecules provided by mesopores. [Pg.413]

F.Moreau, P.Moreau, N.S.Gnep, P.Magnoux, S.Lacombe, M.Guisnet, Micro and mesoporous Materials 90 (2006) 327... [Pg.428]

Nowadays synthesis of mesoporous materials with zeolite character has been suggested to overcome the problems of week catalytic activity and poor hydrothermal stability of highly silicious materials. So different approaches for the synthesis of this new generation of bimodal porous materials have been described in the literature like dealumination [4] or desilication [5], use of various carbon forms as templates like carbon black, carbon aerosols, mesoporous carbon or carbon replicas [6] have been applied. These mesoporous zeolites potentially improve the efficiency of zeolitic catalysis via increase in external surface area, accessibility of large molecules due to the mesoporosity and hydrothermal stability due to zeolitic crystalline walls. During past few years various research groups emphasized the importance of the synthesis of siliceous materials with micro- and mesoporosity [7-9]. Microwave synthesis had... [Pg.433]

The analytical methods for the characterization of catalysts are described extensively in other chapters of this book. Here, only a brief overview on methods of predominant importance for the investigation of micro- and mesoporous materials will be given... [Pg.126]

Gas adsorption (physisorption) is one of the most frequently used characterization methods for micro- and mesoporous materials. It provides information on the pore volume, the specific surface area, the pore size distribution, and heat of adsorption of a given material. The basic principle of the methods is simple interaction of molecules in a gas phase (adsorptive) with the surface of a sohd phase (adsorbent). Owing to van der Waals (London) forces, a film of adsorbed molecules (adsorbate) forms on the surface of the solid upon incremental increase of the partial pressure of the gas. The amount of gas molecules that are adsorbed by the solid is detected. This allows the analysis of surface and pore properties. Knowing the space occupied by one adsorbed molecule, Ag, and the number of gas molecules in the adsorbed layer next to the surface of the solid, (monolayer capacity of a given mass of adsorbent) allows for the calculation of the specific surface area, As, of the solid by simply multiplying the number of the adsorbed molecules per weight unit of solid with the space required by one gas molecule ... [Pg.128]

The smallest pores that can be formed electrochemically in silicon have radii of < 1 nm and are therefore truly microporous. However, confinement effects proposed to be responsible for micropore formation extend well into the lower mesoporous regime and in addition are largely determined by skeleton size, not by pore size. Therefore the IUPAC convention of pore size will not be applied strictly and all PS properties that are dominated by quantum size effects, for example the optical properties, will be discussed in Chapter 7, independently of actual pore size. Furthermore, it is useful in some cases to compare the properties of different pore size regimes. Meso PS, for example, has roughly the same internal surface area as micro PS but shows only negligible confinement effects. It is therefore perfectly standard to decide whether observations at micro PS samples are surface-related or QC-related. As a result, a few properties of microporous silicon will be discussed in the section about mesoporous materials, and vice versa. Properties of PS common to all size regimes, e.g. growth rate, porosity or dissolution valence, will be discussed in this chapter. [Pg.104]

Transmission electron microscopy (TEM) can provide detailed stmcture of zeolites. I use the word characterize or characterization for stmctural study on a unit cell scale, such as various kind of stmctural defects and basic stmctural units, and determine or determination for obtaining atomic coordinates within the unit cell for all the atoms of a crystal. A simple text or reviews for stmctural characterization of porous materials can be found in a book or review articles [1-6]. Now, we are in a new era, that is, we can determine new stmctures of micro- and mesoporous materials only by electron microscopy(EM), an area called electron crystallography (EC) [7-11]. [Pg.437]

Coluccia, S., Marchese, k., and Martra, G. (2000) Molecular probes for the characterization of adsorption sites in micro-and mesoporous materials, in Photofunctional Zeolites (ed. M. Anpo), NOVA Science, New York, pp. 39-74. [Pg.163]


See other pages where Micro-mesoporous materials is mentioned: [Pg.414]    [Pg.110]    [Pg.113]    [Pg.47]    [Pg.56]    [Pg.291]    [Pg.119]    [Pg.61]    [Pg.414]    [Pg.110]    [Pg.113]    [Pg.47]    [Pg.56]    [Pg.291]    [Pg.119]    [Pg.61]    [Pg.128]    [Pg.229]    [Pg.267]    [Pg.190]    [Pg.326]    [Pg.132]    [Pg.447]    [Pg.537]    [Pg.262]   
See also in sourсe #XX -- [ Pg.47 , Pg.56 ]




SEARCH



Mesoporous materials

Micro- and mesoporous materials in fine chemistry

© 2024 chempedia.info