Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

X-ray fluorescence electronics

An introductory manual that explains the basic concepts of chemistry behind scientific analytical techniques and that reviews their application to archaeology. It explains key terminology, outlines the procedures to be followed in order to produce good data, and describes the function of the basic instrumentation required to carry out those procedures. The manual contains chapters on the basic chemistry and physics necessary to understand the techniques used in analytical chemistry, with more detailed chapters on atomic absorption, inductively coupled plasma emission spectroscopy, neutron activation analysis, X-ray fluorescence, electron microscopy, infrared and Raman spectroscopy, and mass spectrometry. Each chapter describes the operation of the instruments, some hints on the practicalities, and a review of the application of the technique to archaeology, including some case studies. With guides to further reading on the topic, it is an essential tool for practitioners, researchers, and advanced students alike. [Pg.407]

Tab. 5. Selective volatilization effects in laser and spark ablation as measured by x-ray fluorescence electron probe microanalysis (according to Refs. [212, 217].)... Tab. 5. Selective volatilization effects in laser and spark ablation as measured by x-ray fluorescence electron probe microanalysis (according to Refs. [212, 217].)...
Introduction Unlike isotope measurement methods, there are several competing approaches available for the compositional elemental analysis of archaeological materials, including X-ray fluorescence, electron (or ion) naicroprobe analysis, or neutron activation. Each approach has its relative merits in terms of performance, spatial resolution, time and cost, and degree of destructiveness of the sample. [Pg.780]

Corrosion products should be examined for both composition and morphology. Compositional analysis can be wet chemical analysis. X-ray diffraction, high and low energy electron diffraction, X-ray fluorescence, electron probe microanalysis, or mass spectrometry. Morphology can be determined using light microscopy, hardness measurements, transmission electron microscopy, SEM, field ion microscopy, plus other techniques. For details on these methods, the reader may refer to basic texts and pertinent review articles, such as Ref 3. [Pg.444]

Acronyms abound in phofoelecfron and relafed specfroscopies buf we shall use only XPS, UPS and, in Sections 8.2 and 8.3, AES (Auger elecfron specfroscopy), XRF (X-ray fluorescence) and EXAFS (exfended X-ray absorption fine sfmcfure). In addition, ESCA is worth mentioning, briefly. If sfands for elecfron specfroscopy for chemical analysis in which elecfron specfroscopy refers fo fhe various branches of specfroscopy which involve fhe ejection of an elecfron from an atom or molecule. Flowever, because ESCA was an acronym infroduced by workers in fhe field of XPS if is mosf often used to refer to XPS rather than to electron spectroscopy in general. [Pg.290]

Figure 8.21 The competitive processes of X-ray fluorescence (XRF) and Auger electron emission... Figure 8.21 The competitive processes of X-ray fluorescence (XRF) and Auger electron emission...
An alternative mechanism of excess energy release when electron relaxation occurs is through x-ray fluorescence. In fact, x-ray fluorescence favorably competes with Auger electron emission for atoms with large atomic numbers. Figure 16 shows a plot of the relative yields of these two processes as a function of atomic number for atoms with initial K level holes. The cross-over point between the two processes generally occurs at an atomic number of 30. Thus, aes has much greater sensitivity to low Z elements than x-ray fluorescence. [Pg.280]

Fig. 16. Relative probabiUties of Auger electron emission and x-ray fluorescence for initial iClevel electron hole as a function of atomic number (19). Fig. 16. Relative probabiUties of Auger electron emission and x-ray fluorescence for initial iClevel electron hole as a function of atomic number (19).
Electron Microprobe A.na.Iysis, Electron microprobe analysis (ema) is a technique based on x-ray fluorescence from atoms in the near-surface region of a material stimulated by a focused beam of high energy electrons (7—9,30). Essentially, this method is based on electron-induced x-ray emission as opposed to x-ray-induced x-ray emission, which forms the basis of conventional x-ray fluorescence (xrf) spectroscopy (31). The microprobe form of this x-ray fluorescence spectroscopy was first developed by Castaing in 1951 (32), and today is a mature technique. Primary beam electrons with energies of 10—30 keV are used and sample the material to a depth on the order of 1 pm. X-rays from all elements with the exception of H, He, and Li can be detected. [Pg.285]

Elemental chemical analysis provides information regarding the formulation and coloring oxides of glazes and glasses. Energy-dispersive x-ray fluorescence spectrometry is very convenient. However, using this technique the analysis for elements of low atomic numbers is quite difficult, even when vacuum or helium paths are used. The electron-beam microprobe has proven to be an extremely useful tool for this purpose (106). Emission spectroscopy and activation analysis have also been appHed successfully in these studies (101). [Pg.422]

Electron Beam Techniques. One of the most powerful tools in VLSI technology is the scanning electron microscope (sem) (see Microscopy). A sem is typically used in three modes secondary electron detection, back-scattered electron detection, and x-ray fluorescence (xrf). AH three techniques can be used for nondestmctive analysis of a VLSI wafer, where the sample does not have to be destroyed for sample preparation or by analysis, if the sem is equipped to accept large wafer-sized samples and the electron beam is used at low (ca 1 keV) energy to preserve the functional integrity of the circuitry. Samples that do not diffuse the charge produced by the electron beam, such as insulators, require special sample preparation. [Pg.356]

Polymer—Cp—MCl complexes have been formed with the Cp-group covalendy bound to a polystyrene bead. The metal complex is uniformly distributed throughout the bead, as shown by electron microprobe x-ray fluorescence. Olefin hydrogenation catalysts were then prepared by reduction with butyl hthium (262). [Pg.441]

Asbestos fiber identification can also be achieved through transmission or scanning electron microscopy (tern, sem) techniques which are especially usefiil with very short fibers, or with extremely small samples (see Microscopy). With appropriate peripheral instmmentation, these techniques can yield the elemental composition of the fibers using energy dispersive x-ray fluorescence, or the crystal stmcture from electron diffraction, selected area electron diffraction (saed). [Pg.352]

Instrumental Methods for Bulk Samples. With bulk fiber samples, or samples of materials containing significant amounts of asbestos fibers, a number of other instmmental analytical methods can be used for the identification of asbestos fibers. In principle, any instmmental method that enables the elemental characterization of minerals can be used to identify a particular type of asbestos fiber. Among such methods, x-ray fluorescence (xrf) and x-ray photo-electron spectroscopy (xps) offer convenient identification methods, usually from the ratio of the various metal cations to the siUcon content. The x-ray diffraction technique (xrd) also offers a powerfiil means of identifying the various types of asbestos fibers, as well as the nature of other minerals associated with the fibers (9). [Pg.352]

The complex of the following destmctive and nondestmctive analytical methods was used for studying the composition of sponges inductively coupled plasma mass-spectrometry (ICP-MS), X-ray fluorescence (XRF), electron probe microanalysis (EPMA), and atomic absorption spectrometry (AAS). Techniques of sample preparation were developed for each method and their metrological characteristics were defined. Relative standard deviations for all the elements did not exceed 0.25 within detection limit. The accuracy of techniques elaborated was checked with the method of additions and control methods of analysis. [Pg.223]

In Total Reflection X-Ray Fluorescence Analysis (TXRF), the sutface of a solid specimen is exposed to an X-ray beam in grazing geometry. The angle of incidence is kept below the critical angle for total reflection, which is determined by the electron density in the specimen surface layer, and is on the order of mrad. With total reflection, only a few nm of the surface layer are penetrated by the X rays, and the surface is excited to emit characteristic X-ray fluorescence radiation. The energy spectrum recorded by the detector contains quantitative information about the elemental composition and, especially, the trace impurity content of the surface, e.g., semiconductor wafers. TXRF requires a specular surface of the specimen with regard to the primary X-ray light. [Pg.27]

The last three detection schemes apply only under very special circumstances. Transmission EXAFS is strictly a probe of bulk structure, i.e., more than about a thousand monolayers. The electron- and ion-yield detection methods, which are used in reflection rather than transmission schemes, provide surface sensitivity, 1-1,000 A, and are inherendy insensitive to bulk structure. X-ray fluorescence EXAFS has the widest range of sensitivity—from monolayer to bulk levels. The combination of electron or ion yield and transmission EXAFS measurements can provide structural information about the X-ray absorbing element at the surface and in the bulk, respectively, of a sample. [Pg.216]


See other pages where X-ray fluorescence electronics is mentioned: [Pg.18]    [Pg.324]    [Pg.326]    [Pg.18]    [Pg.324]    [Pg.326]    [Pg.46]    [Pg.177]    [Pg.1178]    [Pg.315]    [Pg.315]    [Pg.317]    [Pg.319]    [Pg.321]    [Pg.323]    [Pg.325]    [Pg.269]    [Pg.285]    [Pg.285]    [Pg.85]    [Pg.320]    [Pg.383]    [Pg.2]    [Pg.103]    [Pg.121]    [Pg.132]    [Pg.144]    [Pg.196]    [Pg.339]    [Pg.358]    [Pg.375]    [Pg.533]    [Pg.625]   
See also in sourсe #XX -- [ Pg.69 ]




SEARCH



Auger electron and X-ray fluorescence spectroscopy

Fluorescent X-ray

Ray Fluorescence

X electron

X fluorescence

X-Ray Fluorescence and Auger-Electron Emission

X-ray electron

X-ray fluorescence

© 2024 chempedia.info