Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water potential well

Keywords production decline, economic decline, infill drilling, bypassed oil, attic/cellar oil, production potential, coiled tubing, formation damage, cross-flow, side-track, enhanced oil recovery (EOR), steam injection, in-situ combustion, water alternating gas (WAG), debottlenecking, produced water treatment, well intervention, intermittent production, satellite development, host facility, extended reach development, extended reach drilling. [Pg.351]

The potentials of zero charge considered in this chapter are those in the absence of specific adsorption of ionic as well as nonionic species. There has been no attempt to review the enormous amount of data on the effect of specific adsorption on Ea+j, except for the few cases where extrapolation back to zero specific adsorption has been used as a more accurate way to determine <7-o- However, specific adsorption is difficult to relate quantitatively to the structure of interfacial water as well as to the effect of the metal. [Pg.190]

In summary, the bioavailability and observed toxicity of synthetic pyrethroids in sediment-water systems is influenced by a number of physicochemical factors, including the quantity and type of organic and inorganic matter in sediment and in water, as well as by temperature. The use of equilibrium partitioning calculations can be a useful tool for estimating the dissolved and potentially bioavailable fraction of pyrethroids. [Pg.147]

A plot of the Lennard-Jones 9-3 form of Equations 7 and 8 for ST2 water interacting with smectite and mica surfaces is shown in Figure 1. Values for the parameters used in Figure 1 are given in Tables II and III, and in reference (23). The water molecule is oriented so that its protons face the surface and its lone pair electrons face away from the surface, and the protons are equidistant from the surface. Note that the depth of the potential well in Figure 1 for interactions with the smectite surface and mica surface are... [Pg.26]

Several MC and MD studies of interfacial water near hydrophobic surfaces have been reported (33-36,44-48). Both of the MC studies (35,45). as well as the four MD studies (33,34,36,47) reporting detailed observations of interfacial water are discussed here. This comparison will show that choice of the water-water potential is critical for such studies. It will also illustrate the wide range of interfacial properties which can be studied using computer simulations. Results from the early pioneering MC studies for interfacial water are summarized in Table IV. [Pg.28]

Although the potential energy functions can be made to reproduce thermodynamic solvation data quite well, they are not without problems. In some cases, the structure of the ion solvation shell, and in particular the coordination number, deviates from experimental data. The marked sensitivity of calculated thermodynamic data for ion pairs on the potential parameters is also a problem. Attempts to alleviate these problems by introducing polarizable ion-water potentials (which take into account the induced dipole on the water caused by the ion strong electric field) have been made, and this is still an active area of research. [Pg.146]

The values of the fractionation factors in structures [15]-[21] are not strictly comparable since they are defined relative to the fractionation in different solvent standards. However, in aqueous solution, fractionation factors for alcohols and carboxylic acids relative to water are similar and close to unity (Schowen, 1972 Albery, 1975 More O Ferrall, 1975), and it seems clear that the species [15]-[21] involving intermolecular hydrogen bonds with solvent have values of cp consistently below unity. These observations mean that fractionation of deuterium into the solvent rather than the hydrogen-bonded site is preferred, and this is compatible with a broader potential well for the hydrogen-bonded proton than for the protons of the solvents water, alcohol and acetic acid. [Pg.286]

Contaminants may reach the subsurface in a gaseous phase, dissolved in water, as an immiscible hquid, or as suspended particles. Contaminant partitioning in the subsurface is controlled by the physicochemical properties and the porosity of the earth materials, the composition of the subsurface water, as well as the properties of the contaminants themselves. While the physicochemical and mineralogical characteristics of the subsurface sohd phase define the retention capacity of contaminants, the porosity and aggregation stams determine the potential volume of liquid and air that are accessible for contaminant redistribution among the subsurface phases. Enviromnental factors, such as temperature and water content in the subsurface prior to contamination, also affect the pollution pattern. [Pg.92]

The case of a bead in a trap is also equivalent to the power fluctuations in a resistance in an RC electrical circuit [65] (see Fig. 4). The experimental setup is shown in Fig. 5. A micron-sized bead is immersed in water and trapped in an optical well. In the simplest case the trapping potential is harmonic. Flere we will assume that the potential well can have an arbitrary shape and carry out specific analytical computations for the harmonic case. [Pg.56]

In DMF, the appearance, upon addition of acid, of a new wave located at a more positive potential than the former first wave in the absence of acid suggests strongly that the preferred reaction pathway should feature a Chemical-Electrochemical-Electrochemical-Chemical pathway (CEEC) or Chemical-Electrochemical-Chemical-Elec-trochemical pathway (CECE). The foregoing considerations indicate, however, that determination of the kinetic parameters of the reaction, in water as well as in DMF, is a formidable task that, up to now, could be carried out only in selected experimental conditions. [Pg.625]

Semiaqueous or Nonaqueous Solutions. Although the measurement of pH in mixed solvents (e.g., water/organic solvent) is not recommended, for a solution containing more than 5% water, the classical definition of a pH measurement may still apply. In nonaqueous solution, only relative pH values can be obtained. Measurements taken in nonaqueous or partly aqueous solutions require the electrode to be frequently rehydrated (i.e soaked in water or an acidic buffer). Between measurements and after use with a nonaqueous solvent (which is immiscible with water), the electrode should first be rinsed with a solvent, which is miscible with water as well as the analyte solvent, then rinsed with water. Another potential problem with this type of medium is the risk of precipitation of the KC1 electrolyte in the junction between the reference electrode and the measuring solution. To minimize this problem, the reference electrolyte and the sample solution should be matched for mobility and solubility. For example, LiCl in ethanol or LiCl in acetic acid are often used as the reference electrode electrolyte for nonaqueous measurements. [Pg.239]

Ozone is applied in three-phase systems where a selective ozone reaction, oxidation of residual compounds and/or enhancement of biodegradability is required. It can be used to treat drinking water and waste water, as well as gaseous or solid wastes. Especially in drinking water treatment full-scale applications are common, e. g. for particle removal and disinfection, while in waste water treatment sludge ozonation and the use of catalyst in AOP have been applied occasionally. Current research areas for three-phase ozonation include soil treatment and oxidative regeneration of adsorbers. Ozonation in water-solvent systems is seldom studied on the lab-scale and seems favorable only in special cases. In general, potential still exists for new developments and improvements in ozone applications for gas/watcr/solvent and gas/waler/solid systems. [Pg.152]


See other pages where Water potential well is mentioned: [Pg.353]    [Pg.55]    [Pg.853]    [Pg.233]    [Pg.48]    [Pg.77]    [Pg.85]    [Pg.86]    [Pg.101]    [Pg.204]    [Pg.235]    [Pg.211]    [Pg.664]    [Pg.790]    [Pg.1004]    [Pg.227]    [Pg.272]    [Pg.421]    [Pg.162]    [Pg.26]    [Pg.67]    [Pg.158]    [Pg.198]    [Pg.25]    [Pg.739]    [Pg.154]    [Pg.125]    [Pg.289]    [Pg.217]    [Pg.211]    [Pg.39]    [Pg.135]    [Pg.104]    [Pg.156]    [Pg.240]    [Pg.145]    [Pg.21]    [Pg.237]   
See also in sourсe #XX -- [ Pg.775 ]




SEARCH



Liquid water potential well profile

Water wells

© 2024 chempedia.info