Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity measurement methods

Viscosity measurement methods have also been employed for the determination of the solvation number. The viscosity of an electrolyte solution is described by the Jones-Dole equation ... [Pg.35]

Viscosity measurement methods for polymers under high-pressure CO2 may be divided into four classes pressure driven, falling body, rotational devices, and vibrating wire. Accurate viscosity measurements require a homogeneous solution to be prepared, thus ensuring that phase separation does not occur [19, 76]. [Pg.218]

Certain calibrated orifice instruments (Engler-type) provide viscosity measurements at temperature lower than pour point. This is possible because the apparatus agitates the material to the point where large crystals are prevented from forming whereas in other methods, the sample pour point is measured without agitation. [Pg.318]

It was made clear in Chapter II that the surface tension is a definite and accurately measurable property of the interface between two liquid phases. Moreover, its value is very rapidly established in pure substances of ordinary viscosity dynamic methods indicate that a normal surface tension is established within a millisecond and probably sooner [1], In this chapter it is thus appropriate to discuss the thermodynamic basis for surface tension and to develop equations for the surface tension of single- and multiple-component systems. We begin with thermodynamics and structure of single-component interfaces and expand our discussion to solutions in Sections III-4 and III-5. [Pg.48]

Once the value of the constant and the a value in Eq. (2.36) have been evaluated for a particular system, viscosity measurements constitute a relatively easy method for determining the molecular weight of a polymer. Criticize or defend the following proposition Since viscosity is so highly dependent on molecular weight for M > M, a 10% error in 17 will result in a 34% error in M above M, but only a 10% error in M below M, . [Pg.131]

The 2eta potential (Fig. 8) is essentially the potential that can be measured at the surface of shear that forms if the sohd was to be moved relative to the surrounding ionic medium. Techniques for the measurement of the 2eta potentials of particles of various si2es are collectively known as electrokinetic potential measurement methods and include microelectrophoresis, streaming potential, sedimentation potential, and electro osmosis (19). A numerical value for 2eta potential from microelectrophoresis can be obtained to a first approximation from equation 2, where Tf = viscosity of the liquid, e = dielectric constant of the medium within the electrical double layer, = electrophoretic velocity, and E = electric field. [Pg.44]

Analytical and test methods for the characterization of polyethylene and PP are also used for PB, PMP, and polymers of other higher a-olefins. The C-nmr method as well as k and Raman spectroscopic methods are all used to study the chemical stmcture and stereoregularity of polyolefin resins. In industry, polyolefin stereoregularity is usually estimated by the solvent—extraction method similar to that used for isotactic PP. Intrinsic viscosity measurements of dilute solutions in decahn and tetraHn at elevated temperatures can provide the basis for the molecular weight estimation of PB and PMP with the Mark-Houwiok equation, [rj] = KM. The constants K and d for several polyolefins are given in Table 8. [Pg.431]

Viscosity can also be determined from the rising rate of an air bubble through a Hquid. This simple technique is widely used for routine viscosity measurements of Newtonian fluids. A bubble tube viscometer consists of a glass tube of a certain size to which Hquid is added until a small air space remains at the top. The tube is then capped. When it is inverted, the air bubble rises through the Hquid. The rise time in seconds may be taken as a measure of viscosity, or an approximate viscosity in mm /s may be calculated from it. In an older method that is commonly used, the rate of rise is matched to that of a member of a series of standards, eg, with that of the Gardner-Holdt bubble tubes. Unfortunately, this technique employs a nonlinear scale of letter designations and may be difficult to interpret. [Pg.190]

Viscoelastic Measurement. A number of methods measure the various quantities that describe viscoelastic behavior. Some requite expensive commercial rheometers, others depend on custom-made research instmments, and a few requite only simple devices. Even quaHtative observations can be useful in the case of polymer melts, paints, and resins, where elasticity may indicate an inferior batch or unusable formulation. Eor example, the extmsion sweU of a material from a syringe can be observed with a microscope. The Weissenberg effect is seen in the separation of a cone and plate during viscosity measurements or the climbing of a resin up the stirrer shaft during polymerization or mixing. [Pg.192]

Additional complications can occur if the mode of deformation of the material in the process differs from that of the measurement method. Most fluid rheology measurements are made under shear. If the material is extended, broken into droplets, or drawn into filaments, the extensional viscosity may be a more appropriate quantity for correlation with performance. This is the case in the parting nip of a roUer in which filamenting paint can cause roUer spatter if the extensional viscosity exceeds certain limits (109). In a number of cases shear stress is the key factor rather than shear rate, and controlled stress measurements are necessary. [Pg.203]

When viscometric measurements of ECH homopolymer fractions were obtained in benzene, the nonperturbed dimensions and the steric hindrance parameter were calculated (24). Erom experimental data collected on polymer solubiUty in 39 solvents and intrinsic viscosity measurements in 19 solvents, Hansen (30) model parameters, 5 and 5 could be deterrnined (24). The notation 5 symbolizes the dispersion forces or nonpolar interactions 5 a representation of the sum of 8 (polar interactions) and 8 (hydrogen bonding interactions). The homopolymer is soluble in solvents that have solubility parameters 6 > 7.9, 6 > 5.5, and 0.2 < <5.0 (31). SolubiUty was also determined using a method (32) in which 8 represents the solubiUty parameter... [Pg.555]

ASTM D-2502 is one of the most accurate methods of determining molecular weight. The method uses viscosity measurements in the absence of viscosity data, molecular weight can be estimated using the TOTAL correlation. [Pg.76]

ASTM, Standard Test Method for Estimation of Molecular Weight (Relative Molecular Mass) of Petroleum Oils from Viscosity Measurements, ASTM Standard D-2502-92, 1992. [Pg.83]

In principle all methods except viscosity measurement can be used to obtain absolute values of molar mass. Viscosity methods, by contrast, do not give absolute values, but rely on prior calibration using standards of known molar mass. The relationship between polymer solution viscosity and molar mass is merely empirical but the techniques are widely used because of their simplicity. All of the absolute methods are time-consuming and laborious and are not used on a routine basis. As well as the techniques already mentioned, there is the size-exclusion method of chromatography known as Gel-Permeation Chromatography (GPC). All of these methods are discussed in detail in the sections that follow. [Pg.81]

Often in hyperbranched polymers obtained via SCVP, it is not possible to determine the DB directly via NMR analysis. Therefore, other methods, for example, viscosity measurements and light-scattering methods have to be used to confirm the compact structure of a hyperbranched polymer. Such characterizations of hyperbranched (meth)acrylates will be discussed in the next section. [Pg.14]

We introduced the technique for measuring the weak interaction forces acting between two particles using the photon force measurement method. Compared with the previous typically used methods, such as cross-correlation analysis, this technique makes it possible to evaluate the interaction forces without a priori information, such as media viscosity, particle mass and size. In this chapter, we focused especially on the hydrodynamic force as the interaction between particles and measured the interaction force by the potential analysis method when changing the distance between particles. As a result, when the particles were dose to each other, the two-dimensional plots of the kinetic potentials for each particle were distorted in the diagonal direction due to the increase in the interaction force. From the results, we evaluated the interaction coeffidents and confirmed that the dependence of the... [Pg.129]

Historically, viscosity measurements have been the single most important method to characterize fluids in petroleum-producing applications. Whereas the ability to measure a fluid s resistance to flow has been available in the laboratory for a long time, a need to measure the fluid properties at the well site has prompted the development of more portable and less sophisticated viscosity-measuring devices [1395]. These instruments must be durable and simple enough to be used by persons with a wide range of technical skills. As a result, the Marsh funnel and the Fann concentric cylinder, both variable-speed viscometers, have found wide use. In some instances, the Brookfield viscometer has also been used. [Pg.238]

Assays. Nitrogen assays to determine 1-amidoethylene unit content were done by Kjeldahl method. Limiting viscosity numbers were determined from 4 or more viscosity measurements made on a Cannon-Fenske capillary viscometer at 30°C. Data was extrapolated to 0 g/dL polymer concentration using the Huggins equation(44) for nonionic polymers and the Fuoss equation(45) for polyelectrolytes. Equipment. Viscosities were measured using Cannon-Fenske capillary viscometers and a Brookfield LV Microvis, cone and plate viscometer with a CP-40, 0.8° cone. Capillary viscometers received 10 mL of a sample for testing while the cone and plate viscometer received 0.50 mL. [Pg.185]

The effects of cytoplasmic viscosity are widely unexplored. This may be attributed to the relatively difficult measurement methods available. In the cytoplasm, magnetic microparticles were predominantly used to obtain information on viscoelastic properties [125-127]. Clearly, the use of magnetic microparticles demands the use of very expensive equipment the observation of the particles is time-consuming, thus limiting temporal resolution, and the interaction between the particles and the cellular environment may also cause measurement artifacts. [Pg.295]

The technical term for the study of and the measurement of viscosity is rheology. Viscosity measurements can be made in a variety of ways. The simplest method is to determine the time it takes for a metal ball to fall through a specified distance of a liquid in a graduated cylinder. The American Society of Testing Materials (ASTM) specifies several methods for the determination of viscosity of specific substances using this method. When the radius of the ball is small compared to the radius of the graduated cylinder, the viscosity will be... [Pg.58]


See other pages where Viscosity measurement methods is mentioned: [Pg.56]    [Pg.56]    [Pg.47]    [Pg.367]    [Pg.73]    [Pg.413]    [Pg.56]    [Pg.56]    [Pg.47]    [Pg.367]    [Pg.73]    [Pg.413]    [Pg.276]    [Pg.251]    [Pg.462]    [Pg.272]    [Pg.87]    [Pg.669]    [Pg.984]    [Pg.308]    [Pg.613]    [Pg.247]    [Pg.289]    [Pg.295]    [Pg.741]    [Pg.382]    [Pg.222]    [Pg.251]    [Pg.138]   
See also in sourсe #XX -- [ Pg.7 , Pg.19 , Pg.32 , Pg.47 , Pg.48 , Pg.249 , Pg.323 ]




SEARCH



Viscose method

Viscosity measurement

© 2024 chempedia.info