Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure compact

Because of the compact structure of the cycloaliphatic resins the intensity of cross-linking occurring after cure is greater than with the standard diglycidyl ethers. The lack of flexibility of the molecules also leads to more rigid segments between the cross-links. [Pg.765]

Diamond is a naturally occurring form of pure, crystalline carbon. Each carbon atom is surrounded by four others arranged tetrahe-drally. The result is a compact structural network bound by normal chemical bonds. This description offers a ready explanation for the extreme hardness and the great stability of carbon in this form. [Pg.302]

The overall charge (Qt) consumed to oxidize the film by a potential step from Ec to E has two components the charge consumed to relax the compact structure, which will be called the relaxation charge (Qr), and the charge consumed under diffusion control to complete the oxidation, called the later diffusion charge (Qd)- The following equation is obeyed ... [Pg.383]

The anodic overpotential r controls both the rate and degree of oxidation, which means that the opening of the compacted structure is faster the greater the anodic potential, and oxidation is not completed until a steady state is attained at every anodic potential. This overpotential is also included in the constant a, with a subsequent influence on the two terms of the chronoamperometric equation. Both experimental and theoretical results in Fig. 43 show good agreement. [Pg.395]

The compact structure of diamond accounts for its outstanding properties. It is the hardest of all materials with the highest thermal conductivity. It is the most perfectly transparent material and has one of the highest electrical resistivities and, when suitably doped, is an outstanding semiconductor material. The properties of CVD and single-crystal diamonds are summarized in Table 7 2.[1][18]-[20]... [Pg.194]

The double-helical DNA is packaged into a more compact structure by a number of proteins, most notably the basic proteins called histones. This condensation may serve a regulatory role and certainly has a practical purpose. The DNA present within the nucleus of a cell, if simply extended, would be about 1 meter long. The chromosomal proteins compact this long strand of DNA so that it can be packaged into a nucleus with a volume of a few cubic micrometers. [Pg.397]

Dispersion forces increase in strength with the number of electrons, because larger electron clouds are more polarizable than smaller electron clouds. For molecules with comparable numbers of electrons, the shape of the molecule makes an important secondary contribution to the magnitude of dispersion forces. For example. Figure 11-11 shows the shapes of pentane and 2,2-dimethylpropane. Both of these molecules have the formula C5 H12, with 72 total electrons. Notice that 2,2-dimethylpropane has a more compact structure than pentane. This compactness results in a less polarizable electron cloud and smaller dispersion forces. Accordingly, pentane has a boiling point of 36 °C, while 2,2-dimethylpropane boils at 10 °C. [Pg.761]

The interest in hyperbranched polymers arises from the fact that they combine some features of dendrimers, for example, an increasing number of end groups and a compact structure in solution, with the ease of preparation of hn-ear polymers by means of a one-pot reaction. However, the polydispersities are usually high and their structures are less regular than those of dendrimers. Another important advantage is the extension of the concept of hyperbranched polymers towards vinyl monomers and chain growth processes, which opens unexpected possibilities. [Pg.3]

Often in hyperbranched polymers obtained via SCVP, it is not possible to determine the DB directly via NMR analysis. Therefore, other methods, for example, viscosity measurements and light-scattering methods have to be used to confirm the compact structure of a hyperbranched polymer. Such characterizations of hyperbranched (meth)acrylates will be discussed in the next section. [Pg.14]

Relationships between dilute solution viscosity and MW have been determined for many hyperbranched systems and the Mark-Houwink constant typically varies between 0.5 and 0.2, depending on the DB. In contrast, the exponent is typically in the region of 0.6-0.8 for linear homopolymers in a good solvent with a random coil conformation. The contraction factors [84], g=< g >branched/ <-Rg >iinear. =[ l]branched/[ l]iinear. are another Way of cxprcssing the compact structure of branched polymers. Experimentally, g is computed from the intrinsic viscosity ratio at constant MW. The contraction factor can be expressed as the averaged value over the MWD or as a continuous fraction of MW. [Pg.15]

Changing the substrate from gold to silver has been shown to strongly affect the structure of the first few layers of CdS grown by ECALE. STM measurements carried out on the first CdS layer on Ag(lll) revealed a much less compact structure than the one found on Au(lll). This disparity was tentatively attributed to the different structure of the first S layer on Ag(l 11), as obtained by oxidative UPD from sulfide ion solutions, due to a higher affinity of sulfur for silver than for gold. The Cd layers were attained on S by reductive UPD from cadmium ion solutions. Precursors for both elements were dissolved in pyrophosphate/NaOH at pH 12 [43 5],... [Pg.165]

Aldol Reactions of Boron Enolates. The matter of increasing stereoselectivity in the addition step can be addressed by using other reactants. One important version of the aldol reaction involves the use of boron enolates.15 A cyclic TS similar to that for lithium enolates is involved, and the same relationship exists between enolate configuration and product stereochemistry. In general, the stereoselectivity is higher than for lithium enolates. The O-B bond distances are shorter than for lithium enolates, and this leads to a more compact structure for the TS and magnifies the steric interactions that control stereoselectivity. [Pg.71]

Grows algebraically for compact structures linearly for constant capture radius clusters in a well-mixed system. [Pg.194]

Similarly, concepts of solvation must be employed in the measurement of equilibrium quantities to explain some anomalies, primarily the salting-out effect. Addition of an electrolyte to an aqueous solution of a non-electrolyte results in transfer of part of the water to the hydration sheath of the ion, decreasing the amount of free solvent, and the solubility of the nonelectrolyte decreases. This effect depends, however, on the electrolyte selected. In addition, the activity coefficient values (obtained, for example, by measuring the freezing point) can indicate the magnitude of hydration numbers. Exchange of the open structure of pure water for the more compact structure of the hydration sheath is the cause of lower compressibility of the electrolyte solution compared to pure water and of lower apparent volumes of the ions in solution in comparison with their effective volumes in the crystals. Again, this method yields the overall hydration number. [Pg.33]


See other pages where Structure compact is mentioned: [Pg.552]    [Pg.82]    [Pg.169]    [Pg.165]    [Pg.561]    [Pg.896]    [Pg.343]    [Pg.360]    [Pg.292]    [Pg.638]    [Pg.512]    [Pg.34]    [Pg.33]    [Pg.207]    [Pg.320]    [Pg.444]    [Pg.342]    [Pg.16]    [Pg.23]    [Pg.227]    [Pg.232]    [Pg.82]    [Pg.181]    [Pg.191]    [Pg.192]    [Pg.256]    [Pg.115]    [Pg.119]    [Pg.355]    [Pg.246]    [Pg.251]    [Pg.289]    [Pg.194]    [Pg.198]    [Pg.105]    [Pg.283]    [Pg.293]   
See also in sourсe #XX -- [ Pg.238 , Pg.240 ]




SEARCH



Coil-compact structure

Compact (Cake) Structure

Compact discs structures

Compact globular structures

Compact-packed crystal structure

Double layer structure Compact

Oligomers, compact structural

Protein structures, compact

Protein structures, compact stabilization mechanism

Rigid compact structure

Stabilization, compact protein structures

© 2024 chempedia.info