Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl acetate reactions

Palladium (II) chloride alone in acetic acid oxidizes olefins to unsaturated esters. For instance ethylene is oxidized to vinyl acetate. Reaction 20 almost certainly proceeds by way of a Pd (II) a-bonded... [Pg.48]

As an example of the often unintuitive nature of many rate expressions, we examine the vinyl acetate reaction. If this reaction took place as a series of simple elementary steps resulting from gas phase collisions of the reactants, the rate expression would be proportional to the reactant concentrations raised to their stoichiometric coefficients. [Pg.79]

The vinyl acetate reaction is even more sensitive. With S = 44.2 for the side reaction alone it would be virtually impossible to try to prevent an adiabatic reactor from reaching full conversion on oxygen by mere control of the inlet temperature. Small changes in the inlet conditions would quickly amplify down the reactor, forcing complete conversion, adiabatic temperature rise, and destruction of the catalyst, if we were lucky in the best scenario. We must apply external cooling to the vinyl acetate reactor. [Pg.97]

This means that it takes the fluid stream 29 times longer to cause a temperature change in the reactor than it takes to change the reactor composition. This is a sufficient difference in the propagation speeds to induce wrong-way behavior. However, a large Lewis number is not sufficient to create a problem. Another important requirement is that the reaction should be near completion at the exit of the reactor. This requirement is not met for the vinyl acetate reaction which has only a 36 percent conversion in oxygen. [Pg.103]

The most generally accepted mechanistic speculations center about a y3-acetoxyalkylpalladium intermediate (VI) formed by an insertion reaction of ethylene into a palladium-oxygen bond (Reaction 3). It is proposed that this intermediate would then decompose via a palladium-assisted hydride transfer to vinyl acetate (Reaction 4) (36). While Reaction 4 would appear more awkward than a simple )3-hydrogen... [Pg.99]

In other words, although reaction 4.7.3 is achieved in two steps, it shows that if synthesis gas is available as a raw material, acetic acid can be made from it with 100% atom efficiency. In a similar manner, the stoichiometries for the conversion of synthesis gas into methyl acetate, acetic anhydride, and vinyl acetate, reactions 4.7.4. 7.6, respectively, can be worked out. [Pg.117]

Soon after the invention of the Wacicer process, the formation of vinyl acetate by the reaction of ethylene with PdCh in AcOH in the presence of sodium acetate was reported[106,107]. No reaction takes place in the absence of base. The reaction of Pd(OAc)T with ethylene forms vinyl acetate. [Pg.37]

Vinyl acetate reacts with the alkenyl triflate 65 at the /3-carbon to give the 1-acetoxy-1,3-diene 66[68]. However, the reaction of vinyl acetate with 5-iodo-pyrimidine affords 5-vinylpyrimidine with elimination of the acetoxy group[69]. Also stilbene (67) was obtained by the reaction of an excess of vinyl acetate with iodobenzene when interlamellar montmorillonite ethylsilyl-diphenylphosphine (L) palladium chloride was used as an active catalyst[70]. Commonly used PdCl2(Ph3P)2 does not give stilbene. [Pg.138]

The rather unreactive chlorine of vinyl chloride can be displaced with nucleophiles by the catalytic action of PdCb. The conversion of vinyl chloride to vinyl acetate (797) has been studied extensively from an industrial standpoint[665 671]. DMF is a good solvent. 1,2-Diacetoxyethylene (798) is obtained from dichloroethylene[672]. The exchange reaction suffers steric hindrance. The alkenyl chloride 799 is displaced with an acetoxy group whereas 800 and 801 cannot be displaccd[673,674]. Similarly, exchange reactions of vinyl chloride with alcohols and amines have been carried out[668]. [Pg.246]

The reactant corresponding to retrosynthetic path b in Scheme 2.2 can be obtained by Meerwein arylation of vinyl acetate with o-nitrophcnyldiazonium ions[9], Retrosynthetic path c involves oxidation of a 2-(o-nitrophenyl)ethanol. This transformation has also been realized for 2-(o-aminophenyl)ethanols. For the latter reaction the best catalyst is Ru(PPhj)2Cl2. The reaction proceeds with evolution of hydrogen and has been shown to be applicable to a variety of ring-substituted 2-(o-aminophenyl)ethanols[10]. [Pg.15]

Combination and disproportionation are competitive processes and do not occur to the same extent for all polymers. For example, at 60°C termination is virtually 100% by combination for polyacrylonitrile and 100% by disproportionation for poly (vinyl acetate). For polystyrene and poly (methyl methacrylate), both reactions contribute to termination, although each in different proportions. Each of the rate constants for termination individually follows the Arrhenius equation, so the relative amounts of termination by the two modes is given by... [Pg.360]

This oxidation process for olefins has been exploited commercially principally for the production of acetaldehyde, but the reaction can also be apphed to the production of acetone from propylene and methyl ethyl ketone [78-93-3] from butenes (87,88). Careflil control of the potential of the catalyst with the oxygen stream in the regenerator minimises the formation of chloroketones (94). Vinyl acetate can also be produced commercially by a variation of this reaction (96,97). [Pg.52]

Olefins add anhydrous acetic acid to give esters, usually of secondary or tertiary alcohols propjiene [115-07-1] yields isopropyl acetate [108-21-4], isobutjiene [115-11-7] gives tert-huty acetate [540-88-5]. Minute amounts of water inhibit the reaction. Unsaturated esters can be prepared by a combined oxidative esterification over a platinum group metal catalyst. Eor example, ethylene-air-acetic acid passed over a palladium—Hthium acetate catalyst yields vinyl acetate. [Pg.66]

Acetylation of acetaldehyde to ethyUdene diacetate [542-10-9], a precursor of vinyl acetate, has long been known (7), but the condensation of formaldehyde [50-00-0] and acetic acid vapors to furnish acryflc acid [97-10-7] is more recent (30). These reactions consume relatively more energy than other routes for manufacturing vinyl acetate or acryflc acid, and thus are not likely to be further developed. Vapor-phase methanol—methyl acetate oxidation using simultaneous condensation to yield methyl acrylate is still being developed (28). A vanadium—titania phosphate catalyst is employed in that process. [Pg.66]

About half of the wodd production comes from methanol carbonylation and about one-third from acetaldehyde oxidation. Another tenth of the wodd capacity can be attributed to butane—naphtha Hquid-phase oxidation. Appreciable quantities of acetic acid are recovered from reactions involving peracetic acid. Precise statistics on acetic acid production are compHcated by recycling of acid from cellulose acetate and poly(vinyl alcohol) production. Acetic acid that is by-product from peracetic acid [79-21-0] is normally designated as virgin acid, yet acid from hydrolysis of cellulose acetate or poly(vinyl acetate) is designated recycle acid. Indeterrninate quantities of acetic acid are coproduced with acetic anhydride from coal-based carbon monoxide and unknown amounts are bartered or exchanged between corporations as a device to lessen transport costs. [Pg.69]

Raw Material. PVA is synthesized from acetjiene [74-86-2] or ethylene [74-85-1] by reaction with acetic acid (and oxygen in the case of ethylene), in the presence of a catalyst such as zinc acetate, to form vinyl acetate [108-05-4] which is then polymerized in methanol. The polymer obtained is subjected to methanolysis with sodium hydroxide, whereby PVA precipitates from the methanol solution. [Pg.337]

The metals are impregnated together or separately from soluble species, eg, Na2PdCl4 and HAuCl or acetates (159), and are fixed by drying or precipitation prior to reduction. In some instances sodium or potassium acetate is added as a promoter (160). The reaction of acetic acid, ethylene, and oxygen over these catalysts at ca 180°C and 618—791 kPa (75—100 psig) results in the formation of vinyl acetate with 92—94% selectivity the only other... [Pg.385]

Heteroatom functionalized terpene resins are also utilized in hot melt adhesive and ink appHcations. Diels-Alder reaction of terpenic dienes or trienes with acrylates, methacrylates, or other a, P-unsaturated esters of polyhydric alcohols has been shown to yield resins with superior pressure sensitive adhesive properties relative to petroleum and unmodified polyterpene resins (107). Limonene—phenol resins, produced by the BF etherate-catalyzed condensation of 1.4—2.0 moles of limonene with 1.0 mole of phenol have been shown to impart improved tack, elongation, and tensile strength to ethylene—vinyl acetate and ethylene—methyl acrylate-based hot melt adhesive systems (108). Terpene polyol ethers have been shown to be particularly effective tackifiers in pressure sensitive adhesive appHcations (109). [Pg.357]

Vinyl acetate (ethenyl acetate) is produced in the vapor-phase reaction at 180—200°C of acetylene and acetic acid over a cadmium, 2inc, or mercury acetate catalyst. However, the palladium-cataly2ed reaction of ethylene and acetic acid has displaced most of the commercial acetylene-based units (see Acetylene-DERIVED chemicals Vinyl polymers). Current production is dependent on the use of low cost by-product acetylene from ethylene plants or from low cost hydrocarbon feeds. [Pg.393]

Reactions between vinyl ethers or vinyl acetate and ethyleneimine have not been satisfactory (198), but ethyleneimine does add onto the double bond of /V,/V-dimethy1 vinyl amine to give 1-dimethyl amino-1-ethyleneiminoethane [5498-98-6] (217). [Pg.7]

Gross-Linking. A variety of PE resins, after their synthesis, can be modified by cross-linking with peroxides, hydrolysis of silane-grafted polymers, ionic bonding of chain carboxyl groups (ionomers), chlorination, graft copolymerization, hydrolysis of vinyl acetate copolymers, and other reactions. [Pg.369]

Low DS starch acetates ate manufactured by treatment of native starch with acetic acid or acetic anhydride, either alone or in pyridine or aqueous alkaline solution. Dimethyl sulfoxide may be used as a cosolvent with acetic anhydride to make low DS starch acetates ketene or vinyl acetate have also been employed. Commercially, acetic anhydride-aqueous alkaU is employed at pH 7—11 and room temperature to give a DS of 0.5. High DS starch acetates ate prepared by the methods previously detailed for low DS acetates, but with longer reaction time. [Pg.345]

Analogously, poly(vinyl ketals) can be prepared from ketones, but since poly(vinyl ketals) are not commercially important, they are not discussed here. The acetalization reaction strongly favors formation of the 1,3-dioxane ring, which is a characteristic feature of this class of resins. The first of this family, poly(vinyl ben2al), was prepared in 1924 by the reaction of poly(vinyl alcohol) with ben2aldehyde in concentrated hydrochloric acid (2). Although many members of this class of resins have been made since then, only poly(vinyl formal) [9003-33-2] (PVF) and poly(vinyl butyral) [63148-65-2] (PVB) continue to be made in significant commercial quantities. [Pg.449]


See other pages where Vinyl acetate reactions is mentioned: [Pg.78]    [Pg.80]    [Pg.94]    [Pg.600]    [Pg.78]    [Pg.80]    [Pg.94]    [Pg.600]    [Pg.283]    [Pg.419]    [Pg.20]    [Pg.37]    [Pg.530]    [Pg.167]    [Pg.22]    [Pg.166]    [Pg.277]    [Pg.282]    [Pg.283]    [Pg.124]    [Pg.355]    [Pg.367]    [Pg.320]    [Pg.84]    [Pg.202]   


SEARCH



Elementary Reaction Steps of Vinyl Acetate in the Liquid Phase

Ethers, vinyl reaction with ketene acetals

Reaction vinyl acetate monomer process

Reactions of Poly(vinyl acetate)

Vinyl acetate common production reaction

Vinyl acetate photocycloaddition reactions

Vinyl acetate polymerization side reactions

Vinyl acetate reaction with chlorosulfonyl isocyanate

Vinyl acetate reaction with methyl lithium

Vinyl acetate synthesis reaction

Vinyl acetate, reaction with

Vinyl reaction

© 2024 chempedia.info