Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Meerwein arylation

The reactant corresponding to retrosynthetic path b in Scheme 2.2 can be obtained by Meerwein arylation of vinyl acetate with o-nitrophcnyldiazonium ions[9], Retrosynthetic path c involves oxidation of a 2-(o-nitrophenyl)ethanol. This transformation has also been realized for 2-(o-aminophenyl)ethanols. For the latter reaction the best catalyst is Ru(PPhj)2Cl2. The reaction proceeds with evolution of hydrogen and has been shown to be applicable to a variety of ring-substituted 2-(o-aminophenyl)ethanols[10]. [Pg.15]

This synthesis is only one example of a wide range of reactions which involve aryl (or alkyl) radical addition to electron-deficient double bonds resulting in reduction.The corresponding oxidative reaction using aryl radicals is the well known Meerwein reaction, which uses copper(II) salts. [Pg.69]

If an electron is transferred from a reducing agent to an arenediazonium ion, an aryldiazenyl radical (8.47) is formed. As discussed in this section, the latter dissociates rapidly into an aryl radical and N2 (Scheme 8-28). This type of dediazoniation was observed by Griess (1864 c), albeit not in our present formulation. He found that arenediazonium ions formed iodoarenes and N2 in the presence of iodide ions. More important for synthetic organic chemistry were some dediazonia-tions discovered in the late 19th and early 20th centuries, which are catalyzed by metals and metal ions, namely the Sandmeyer, Pschorr, Meerwein, and related syntheses (see Ch. 10). [Pg.189]

The arylation of alkenes by treatment with a diazonium chloride (or bromide) solution and cupric chloride (or bromide) is called the Meerwein arylation reaction, after its discoverer (Meerwein et al., 1939). Originally, it was discovered using a,P-unsaturated carbonyl compounds, namely coumarin (Scheme 10-43) and cinnamic derivatives (Schemes 10-44 and 10-45). As Scheme 10-45 shows, the Meerwein reac-... [Pg.243]

The Meerwein reaction is a valuable method for the arylation of alkenes because of the easy availability of cheap aromatic amines and compounds containing double bonds. A disadvantage is that the yield is often low (normally 20-50%, in exceptional cases reaching 80%, see Table 10-3). The reaction can be carried out in water if the alkene derivative is sufficiently soluble otherwise an organic co-solvent is necessary. Meerwein et al. (1939) used acetone, which is still the most popular solvent used today. The mechanistic function of acetone will be discussed later in this section. [Pg.244]

As shown in Schemes 10-44 and 10-45, two products may be formed in a Meerwein reaction Scheme 10-44 shows a simple aryl-de-hydrogenation of cinnamic aldehyde, whereas Scheme 10-45 shows an aryl-de-hydrogenation combined with the addition of HC1 to the double bond of the methyl ester of cinnamic acid. No systematic studies have been made as to which of the two products will be formed in a given reaction, what experimental conditions will favor one or the other product, and what substituents or other structural characteristics of the alkene influence the ratio of the two types of product. The addition product can, in most cases, easily be converted... [Pg.244]

Butadienes are arylated in the 1-position and add the chlorine in the 4-position, thus yielding 2-butene derivatives. The double bond in 2-butene is much less reactive than those in 1,3-butadiene, and therefore the latter does not form diarylbutane derivatives when more than one equivalent of the diazonium salt is present. An extensive study of the effects of reaction conditions on Meerwein reactions with butadiene was made by Dombrovskii and Ganushchak (1961). [Pg.245]

Meerwein reactions can conveniently be used for syntheses of intermediates which can be cyclized to heterocyclic compounds, if an appropriate heteroatom substituent is present in the 2-position of the aniline derivative used for diazotization. For instance, Raucher and Koolpe (1983) described an elegant method for the synthesis of a variety of substituted indoles via the Meerwein arylation of vinyl acetate, vinyl bromide, or 2-acetoxy-l-alkenes with arenediazonium salts derived from 2-nitroani-line (Scheme 10-46). In the Meerwein reaction one obtains a mixture of the usual arylation/HCl-addition product (10.9) and the carbonyl compound 10.10, i. e., the product of hydrolysis of 10.9. For the subsequent reductive cyclization to the indole (10.11) the mixture of 10.9 and 10.10 can be treated with any of a variety of reducing agents, preferably Fe/HOAc. [Pg.245]

Alkynes can also be arylated by the Meerwein procedure, as shown by Muller in 1949. The reaction of buta-l-en-3-yne (Scheme 10-47) was studied by Kheruze and Petrov (1960). Arylation at an sp2-hybridized carbon is obviously considerably faster than the analogous reaction at an sp-hybridized carbon. A mechanistically interesting case of a Meerwein reaction with phenylacetylene will be discussed later in this section. [Pg.246]

Enolizable compounds can be used for Meerwein reactions provided that the keto-enol equilibrium is not too far on the side of the ketone for example, P-dicar-bonyl compounds such as acetylacetone are suitable (Citterio and Ferrario, 1983). The arylation of enol esters or ethers (10.12) affords a convenient route for arylating aldehydes and ketones at the a-carbon atom (Scheme 10-48). Silyl enol ethers [10.12, R = Si(CH3)3] can be used instead of enol ethers (Sakakura et al., 1985). The reaction is carried out in pyridine. [Pg.246]

Another arylation reaction which uses arenediazonium salts as reagents and is catalyzed by copper should be discussed in this section on Meerwein reactions. It is the Beech reaction (Scheme 10-49) in which ketoximes such as formaldoxime (10.13, R=H), acetaldoxime (10.13, R=CH3), and other ketoximes with aliphatic residues R are arylated (Beech, 1954). The primary products are arylated oximes (10.14) yielding a-arylated aldehydes (10.15, R=H) or ketones (10.15, R=alkyl). Obviously the C=N group of these oximes reacts like a C = C group in classical Meerwein reactions. It is interesting that the addition of some sodium sulfite is necessary for the Beech reaction (0.1 to 0.2 equivalent of CuS04 and 0.03 equivalent of Na2S03). [Pg.246]

Some observations are important for improvement of the yield and for the elucidation of the mechanism of the Meerwein reaction. Catalysts are necessary for the process. Cupric chloride is used in almost all cases. The best arylation yields are obtained with low CuCl2 concentrations (Dickerman et al., 1969). One effect of CuCl2 was detected by Meerwein et al. (1939) in their work in water-acetone systems. They found that in solutions of arenediazonium chloride and sodium acetate in aqueous acetone, but in the absence of an alkene, the amount of chloroacetone formed was only one-third of that obtained in the presence of CuCl2. They concluded that chloroacetone is formed according to Scheme 10-50. The formation of chloroacetone with CuCl2 in the absence of a diazonium salt (Scheme 10-51) was investigated by Kochi (1955 a, 1955 b). Some Cu11 ion is reduced by acetone to Cu1 ion, which provides the electron for the transfer to the diazonium ion (see below). [Pg.247]

Doyle et al. (1977 c) and Oae et al. (1980) reported modified Meerwein arylations with significant improvements in the yield by the use of aryl amines and alkyl nitrites in place of arenediazonium salts. However, good yields are only achieved if alkenes activated by electron-withdrawing groups are present. [Pg.247]

The reviews by Rondestvedt (1960, 1976) are outdated so far as the mechanism of the Meerwein reaction is concerned. This statement is substantiated by Rondestvedt s own comment in his 1976 review (p. 226) in which he states that the generally accepted mechanism involves the aryl radical. .., though the manner of its formation and its subsequent reaction are still controversial . Meerwein et al., in their original paper (1939), expressed the opinion that the reaction is ionic in nature. A radical mechanism was first proposed by Koelsch in 1943 (see also Koelsch and Bockelheide, 1944). He received immediate support from Bergmann et al. (1944) and Bergmann and Weizmann (1944), in spite of the fact that Koelsch s claim was based on rather uncertain and vague arguments. [Pg.248]

The chain process of the Meerwein reaction can be visualized as shown in Scheme 10-57. There are at least two likely termination reactions for the chain process, namely the addition of a chlorine atom from CuCl2 to the aryl radical (Scheme 10-58) or reaction of the aryl radical with a hydrogen atom of acetone, followed by the formation of chloroacetone (Scheme 10-59). [Pg.249]

Kochi (1956a, 1956b) and Dickerman et al. (1958, 1959) studied the kinetics of the Meerwein reaction of arenediazonium salts with acrylonitrile, styrene, and other alkenes, based on initial studies on the Sandmeyer reaction. The reactions were found to be first-order in diazonium ion and in cuprous ion. The relative rates of the addition to four alkenes (acrylonitrile, styrene, methyl acrylate, and methyl methacrylate) vary by a factor of only 1.55 (Dickerman et al., 1959). This result indicates that the aryl radical has a low selectivity. The kinetic data are consistent with the mechanism of Schemes 10-52 to 10-56, 10-58 and 10-59. This mechanism was strongly corroborated by Galli s work on the Sandmeyer reaction more than twenty years later (1981-89). [Pg.250]

Thus the Meerwein reaction is a homologation of the Sandmeyer reaction. The arylethane radical 10.17 is a homologue of the aryl radical in the Sandmeyer reaction. [Pg.250]

Stronger reducing agents than Cu1 can be used for reactions that are related to the classical Meerwein reaction. Tim salts not only catalyze the formation of aryl radicals from diazonium ions but, as shown by Citterio and Vismara (1980) and Cit-terio et al. (1982 a), in stoichiometric proportions they also reduce the primary aryl-ethane radical to the arylethyl anion, which is finally protonated by the solvent SH (Scheme 10-61). This method is the subject of a contribution to Organic Syntheses (Citterio, 1990), in which 4-(4 -chlorophenyl)buten-2-one is obtained in 65-75% yield from 4-chlorobenzenediazonium chloride and but-3-en-2-one. [Pg.251]

There are some reactions in which an aryl radical reacts with an sp2-carbon atom of an aliphatic side chain. In such reactions a carbo- or heteroalicyclic ring fused with a benzene ring is formed (Scheme 10-80). They may be called intramolecular Meerwein reactions. Techniques for these syntheses were developed by Beckwith s group in the 1980s. The majority of Beckwith s investigations were made with 2-(2 -propenyloxy)- and 2[(2 -methyl-2 -propenyl)oxy]benzenediazonium tetrafluoro-... [Pg.267]

Photochemical arylations of ethene derivatives by arenediazonium salts, i.e., photo-Meerwein reactions, were carried out by Becker and Israel (1975), but were not studied or applied later. [Pg.281]

Addition of bromine to 1 in chloroform solution at 10°C led in high yield to the formation of the exo-5-a/ih -7-dibromide 2. No other products were isolated. The formation of this rearranged product can be explained in terms of Wagner-Meerwein rearrangement where migration of the aryl group is involved (eqn. 1). [Pg.66]

Arylation of Activated Alkenes by Diazonium Salts Meerwein Arylation... [Pg.929]

Alkenes activated by an electron-withdrawing group (Z may be C=C, halogen, C=0, Ar, CN, etc.) can be arylated by treatment with a diazonium salt and a cupric chloride catalyst. This is called the Meerwein arylation reaction Addition of... [Pg.930]

The compound ArX can be added across double bonds, in a free-radical process, by treatment of alkenes with diazonium salts, although Meerwein arylation (substi-... [Pg.1040]

Meerwein Arylation Reactions. Aryl diazonium ions can also be used to form certain types of carbon-carbon bonds. The copper-catalyzed reaction of diazonium ions with conjugated alkenes results in arylation of the alkene, known as the Meerwein arylation reaction.114 The reaction sequence is initiated by reduction of the diazonium ion by Cu(I). The aryl radical adds to the alkene to give a new (3-aryl radical. The final step is a ligand transfer that takes place in the copper coordination sphere. An alternative course is oxidation-deprotonation, which gives a styrene derivative. [Pg.1035]

The reaction gives better yield with dienes, styrenes, or alkenes substituted with EWGs than with simple alkenes. These groups increase the rate of capture of the aryl radical. The standard conditions for the Meerwein arylation employ aqueous solutions of diazonium ions. Conditions for in situ diazotization by f-butyl nitrite in the presence of CuCl2 and acrylonitrile or styrene are also effective.115... [Pg.1035]

By single electron transfer from an electron donor, e.g. a transition metal ion, a trivalent phosphorous derivative or a base, followed by dissociation of the intermediate diazenyl radical in an aryl radical and dinitrogen. The aryl radical reacts with the solvent or with added reagents in various ways, as shown by the relatively large number of classical named reactions (Sandmeyer, Pschorr, Gomberg-Bachmann, Meerwein reactions). [Pg.647]


See other pages where Meerwein arylation is mentioned: [Pg.513]    [Pg.513]    [Pg.229]    [Pg.33]    [Pg.221]    [Pg.244]    [Pg.248]    [Pg.251]    [Pg.98]    [Pg.74]    [Pg.1393]    [Pg.1396]    [Pg.1649]    [Pg.1036]    [Pg.107]    [Pg.81]    [Pg.406]   
See also in sourсe #XX -- [ Pg.929 ]




SEARCH



Additions onto Olefins Meerwein Arylation

Alkenes Meerwein arylation

And Meerwein arylation

Aryl ketones, Meerwein-POnndorf-Verley

Aryl ketones, Meerwein-POnndorf-Verley reduction

Mechanisms Meerwein arylation

Meerwein

Meerwein arylation atom transfer reactions

Meerwein arylation intramolecular

Meerwein arylation radical addition reactions

Meerwein arylation reaction

© 2024 chempedia.info