Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrafiltration membrane materials

Ultrafiltration separations range from ca 1 to 100 nm. Above ca 50 nm, the process is often known as microfiltration. Transport through ultrafiltration and microfiltration membranes is described by pore-flow models. Below ca 2 nm, interactions between the membrane material and the solute and solvent become significant. That process, called reverse osmosis or hyperfiltration, is best described by solution—diffusion mechanisms. [Pg.293]

Fouling is controlled by selection of proper membrane materials, pretreatment of feed and membrane, and operating conditions. Control and removal of fouling films is essential for industrial ultrafiltration processes. [Pg.298]

Cellulose acetate, the earhest reverse osmosis membrane, is still widely used. Asymmetric polyamide and thin-film composites of polyamide and several other polymers have also made gains in recent years whereas polysulfone is the most practical membrane material in ultrafiltration appHcations. [Pg.382]

Membrane Processes Membrane processes are also used diafiltration is convenient for the removal of small contaminating species such as salts and smaller proteins, and can be combined with subsequent steps to concentrate the protein. Provided that proper membrane materials have been selected to avoid protein-membrane interactions, diafiltration using ultrafiltration membranes is typically straightforward, high-yielding and capital-sparing. These operations can often tolerate the concentration or the desired protein to its solu-bihty limit, maximizing process efficiency. [Pg.2061]

The discussion so far implies that membrane materials are organic polymers, and in fact most membranes used commercially are polymer-based. However, in recent years, interest in membranes made of less conventional materials has increased. Ceramic membranes, a special class of microporous membranes, are being used in ultrafiltration and microfiltration applications for which solvent resistance and thermal stability are required. Dense, metal membranes, particularly palladium membranes, are being considered for the separation of hydrogen from gas mixtures, and supported liquid films are being developed for carrier-facilitated transport processes. [Pg.353]

Subsequently, a clear Juice is obtained by ultrafiltration. A serious problem in this process is the fouling of the ultrafiltration membrane, causing a reduced flux rate. For apple processing, the material responsible for this effect has been isolated and extensively characterized [2-4]. It appeared to consist mainly of ramified pectic hairy regions (MHR), which were not degraded by the pectolytic enzymes present in the technical pectinase preparation. [Pg.232]

Traditionally, ultrafilters have been manufactured from cellulose acetate or cellulose nitrate. Several other materials, such as polyvinyl chloride and polycarbonate, are now also used in membrane manufacture. Such plastic-type membranes exhibit enhanced chemical and physical stability when compared with cellulose-based ultrafiltration membranes. An important prerequisite in manufacturing ultrafilters is that the material utilized exhibits low protein adsorptive properties. [Pg.137]

Membranes. Photopolymer chemistry is being applied to the design and manufacture of a variety of membrane materials. In these applications, photopolymer technology is used to precisely define the microscopic openings in the membrane as it is being formed or to modify an existing membrane. Some of the applications of photopolymer chemistry to membranes include the modification of ultrafiltration membranes (78) and the manufacture of amphiphilic (79), gas permeable (80), untrafiltration (81), ion-selective electrode (82) and reverse osmosis membranes. [Pg.10]

Cellophane is frequently used for dialysis and it has a pore size of approximately 4—8 gm, which makes it impermeable to molecules with a relative molecular mass in excess of about 10 000. The development of a variety of membrane materials in which the pore size is much more rigorously controlled, has led to wider applications of ultrafiltration (Table 3.11). Various cellulose and polycarbonate membranes are available with pore sizes down to 5 nm which are capable of excluding molecules with a relative molecular mass of about 50. The internal structure of such membranes, as well as the pore size, determines their exclusion range and as a result precise specifications of membranes vary from one manufacturer to another. [Pg.148]

A significant recent advance has been the development of microfiltration and ultrafiltration membranes composed of inorganic oxide materials. These are presently produced by two main techniques (a) deposition of colloidal metal oxide on to a supporting material such as carbon, and (b) as purely ceramic materials by high temperature sintering of spray-dried oxide microspheres. Other innovative production techniques lead to the... [Pg.439]

The foregoing conclusions arising from earlier work (6b,10, 57,63-85) offer fruitful directions for a continuing program of research and development involving a wide variety of membrane materials, and reverse osmosis and ultrafiltration systems. [Pg.44]

Membrane reactors have been investigated since the 1970s 11). Although membranes can have several functions in a reactor, the most obvious is the separation of reaction components. Initially, the focus has been mainly on polymeric membranes applied in enzymatic reactions, and ultrafiltration of enzymes is commercially applied on a large scale for the synthesis of fine chemicals (e.g., L-methionine) 12). Membrane materials have been improved significantly over those applied initially, and nanofiltration membranes suitable to retain relatively small compounds are now available commercially (e.g., mass cut-off of 400—750 Da). [Pg.74]

Membranes are made from different materials. Cellulose nitrate ultrafiltration membranes are of limited chemical and thermal compatibility and with imprecise cut-off. The membranes from polyvinylidene fluoride, polyaciyloiutrile or polysulphone possess good chemical compatibility are more stable over a very wide pH range and ate easy to clean. Problems with membrane fouling can usually be overcome by trcatment of the membranes with detergents, proteases or with acid or alkaline solutions. [Pg.232]

Membrane reactors can be considered passive or active according to whether the membrane plays the role of a simple physical barrier that retains the free enzyme molecules solubilized in the aqueous phase, or it acts as an immobilization matrix binding physically or chemically the enzyme molecules. Polymer- and ceramic-based micro- and ultrafiltration membranes are used, and particular attention has to be paid to the chemical compatibility between the solvent and the polymeric membranes. Careful, fine control of the transmembrane pressure during operation is also required in order to avoid phase breakthrough, a task that may sometimes prove difficult to perform, particularly when surface active materials are present or formed during biotransformahon. Sihcone-based dense-phase membranes have also been evaluated in whole-cell processes [55, 56], but... [Pg.205]

Poly(ethersulfone) (PES) is widely used for the preparation of membranes, including ultrafiltration, nanofiltration, and reverse osmosis membranes (88). However, PES lacks hydrophilic groups and the membrane material must be therefore modified. [Pg.238]

In addition to ABS, membranes using a polymer blend of chitosan and ABS with glutaraldehyde as a crosslinking agent have been used as coating materials for PES ultrafiltration membranes (90). [Pg.238]

Most ultrafiltration membranes are porous, asymmetric, polymeric structures produced by phase inversion, i.e., the gelation or precipitation of a species from a soluble phase. See also Membrane Separations Technology. Membrane structure is a function of the materials used (polymer composition, molecular weight distribution, solvent system, etc) and the mode of preparation (solution viscosity, evaporation time, humidity, etc.). Commonly used polymers include cellulose acetates, polyamides, polysulfoncs, dyncls (vinyl chlondc-acrylonitrile copolymers) and puly(vinylidene fluoride). [Pg.1635]

Polyelectrolyte complex membranes are phase-inversion membranes where polymeric anions and cations react during the gelation. Inorganic ultrafiltration membranes are formed by depositing particles on a porous substrate. Dynamic membranes are concentration polarization layers formed in situ from the ultrafiltration of colloidal material analogous to a precoat in conventional filter operations. Track-etched membranes are made by exposing thin films (mica, polycarbonate, etc.) to fission fragments from a radiation source. [Pg.1635]


See other pages where Ultrafiltration membrane materials is mentioned: [Pg.240]    [Pg.240]    [Pg.154]    [Pg.2039]    [Pg.346]    [Pg.126]    [Pg.127]    [Pg.354]    [Pg.527]    [Pg.79]    [Pg.457]    [Pg.139]    [Pg.234]    [Pg.242]    [Pg.137]    [Pg.148]    [Pg.442]    [Pg.34]    [Pg.34]    [Pg.309]    [Pg.54]    [Pg.53]    [Pg.328]    [Pg.116]    [Pg.154]    [Pg.577]    [Pg.578]    [Pg.19]    [Pg.12]    [Pg.129]   
See also in sourсe #XX -- [ Pg.137 ]

See also in sourсe #XX -- [ Pg.133 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 ]




SEARCH



Membrane materials

Membrane materials membranes

Ultrafiltrate

Ultrafiltration membrane fabrication materials

© 2024 chempedia.info