Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Type 1 titrations

Turbidimetric titrations were conducted in three ways. In "Type 1" titrations, a mixture of PDMDAAC (0.04-4.0 g/L) and protein (0.1-10 g/L) were combined at pH 4 in distilled deionized water or dilute (0.05-0.5M) NaCl. The optical probe (2 cm path length) of a Brinkman PC600 probe colorimeter (240 nm), and a combination pH electrode connected to an expanded scale pH meter (Orion 811 or Radiometer pH M26), were both placed in the solution. Titrant (0.50 M NaOH or 0.50 M HC1) was delivered from a 2.0 mL microburet (Gilmont) with gentle stirring. Alternatively, turbidity was monitored while a protein solution was added to PDMDAAC (at constant ionic strength) or vice-versa. Turbidity was reported as 100-96T, which is linearly proportional to the absolute turbidity in the range 80<%T<100. [Pg.163]

FIG. 2 Type 1 titration of a solution of bovine serum albumin and polydiallyldi-methyl ammonium chloride in 0.1 M NaCl. The pH was varied by supplementation of the mixture with small volumes of either 0.1 mol/L HC1 or NaOH solutions. Black circles 100% — % transmittance, open circles 90° scattering intensity of light at 780 nm. pHc pH of complex formation pH pH at the onset of phase separation. (Reprinted with permission from Ref. 22. Copyright 1993 American Chemical Society.)... [Pg.690]

FIG. 7 Ionic strength (7) dependence of the protein global charge at the onset of complexation (Zpr)c in bovine serum albumin and polyelectrolyte mixtures (type 1 titrations). PMAPTAC poly(acrylamidopropyl trimethylammonium) chloride PAMPS poly(acrylamido methylpropylsulfonate) PAMPS(8) copolymer of AMPS and 20 mol% acrylamide PDADMAC poly(diallyl dimethylammonium) chloride. (Reprinted with permission from Ref. 22. Copyright 1998 American Chemical Society.)... [Pg.698]

Ben Yaakov and Lorch [8] identified the possible error sources encountered during an alkalinity determination in brines by a Gran-type titration and determined the possible effects of these errors on the accuracy of the measured alkalinity. Special attention was paid to errors due to possible non-ideal behaviour of the glass-reference electrode pair in brine. The conclusions of the theoretical error analysis were then used to develop a titration procedure and an associated algorithm which may simplify alkalinity determination in highly saline solutions by overcoming problems due to non-ideal behaviour and instability of commercial pH electrodes. [Pg.59]

Often, greater accuracy may be obtained, as in Volhard type titration, by performing a back titration of the excess silver ions. In such a case, a measured amount of standard silver nitrate solution is added in excess to a measured amount of sample. The excess Ag+ that remains after it reacts with the analyte is then measured by back titration with standard potassium thiocyanate (KSCN). If the silver salt of the analyte ion is more soluble than silver thiocyanate (AgSCN), the former should be filtered off from the solution. Otherwise, a low value error can occur due to overconsumption of thiocyanate ion. Thus, for the determination of ions (such as cyanide, carbonate, chromate, chloride, oxalate, phosphate, and sulfide, the silver salts of which are all more soluble than AgSCN), remove the silver salts before the back titration of excess Ag.+ On the other hand, such removal of silver salt is not necesary in the Volhard titration for ions such as bromide, iodide, cyanate, thiocyanate, and arsenate, because the silver salts of these ions are less soluble than AgSCN, and will not cause ary error. In the determination of chloride by Volhard titration, the solution should be made strongly acidic to prevent interference from carbonate, oxalate, and arsenate, while for bromide and iodide analysis titration is carried out in neutral media. [Pg.73]

Performing a series of Figure 2 type titrations, starting with different amounts of the same seed latex in the mixture and ending with the same fractional amount of nonionic surfactant, N (Equation 3) provides a set of a vs. M values. These can be plotted to provide estimates for and y. [Pg.483]

ION EXCHANGED FORM CALCINATION TEMP., °C SAMPLE TYPE TITRATED ACIDITY, MEQ./GRAM H30+ AI(OH)+<3- > total ... [Pg.379]

Recent developments m calorimetry have focused primarily on the calorimetry of biochemical systems, with the study of complex systems such as micelles, protems and lipids using microcalorimeters. Over the last 20 years microcalorimeters of various types including flow, titration, dilution, perfiision calorimeters and calorimeters used for the study of the dissolution of gases, liquids and solids have been developed. A more recent development is pressure-controlled scamiing calorimetry [26] where the thennal effects resulting from varying the pressure on a system either step-wise or continuously is studied. [Pg.1918]

Types of Chelometric Titrations. Chelometric titrations may be classified according to their manner of performance direct titrations, back titrations, substitution titrations, redox titrations, or indirect methods. [Pg.1167]

This type of titration is called a hack titration. [Pg.275]

In the overview to this chapter we noted that the experimentally determined end point should coincide with the titration s equivalence point. For an acid-base titration, the equivalence point is characterized by a pH level that is a function of the acid-base strengths and concentrations of the analyte and titrant. The pH at the end point, however, may or may not correspond to the pH at the equivalence point. To understand the relationship between end points and equivalence points we must know how the pH changes during a titration. In this section we will learn how to construct titration curves for several important types of acid-base titrations. Our... [Pg.279]

Thus far we have examined titrimetric methods based on acid-base, complexation, and redox reactions. A reaction in which the analyte and titrant form an insoluble precipitate also can form the basis for a titration. We call this type of titration a precipitation titration. [Pg.350]

Other analytical techniques ate also available for the determination of maleic anhydride sample purity. For example, maleic anhydride content can be determined by reacting it with a known excess of aniline [62-53-3] in an alcohol mixture (170). The solution is then titrated with an acid to determine the amount of unconsumed aniline. This number is then used to calculate the amount of maleic anhydride reacted and thus its concentration. Another method of a similar type has also been reported (171). [Pg.459]

Cyclic Peroxides. CycHc diperoxides (4) and triperoxides (5) are soHds and the low molecular weight compounds are shock-sensitive and explosive (151). The melting points of some characteristic compounds of this type are given in Table 5. They can be reduced to carbonyl compounds and alcohols with zinc and alkaH, zinc and acetic acid, aluminum amalgam, Grignard reagents, and warm acidified iodides (44,122). They are more difficult to analyze by titration with acidified iodides than the acycHc peroxides and have been sucessfuUy analyzed by gas chromatography (112). [Pg.116]

The apparent acid strength of boric acid is increased both by strong electrolytes that modify the stmcture and activity of the solvent water and by reagents that form complexes with B(OH) 4 and/or polyborate anions. More than one mechanism may be operative when salts of metal ions are involved. In the presence of excess calcium chloride the strength of boric acid becomes comparable to that of carboxyUc acids, and such solutions maybe titrated using strong base to a sharp phenolphthalein end point. Normally titrations of boric acid are carried out following addition of mannitol or sorbitol, which form stable chelate complexes with B(OH) 4 in a manner typical of polyhydroxy compounds. EquiUbria of the type ... [Pg.193]

The holistic thermodynamic approach based on material (charge, concentration and electron) balances is a firm and valuable tool for a choice of the best a priori conditions of chemical analyses performed in electrolytic systems. Such an approach has been already presented in a series of papers issued in recent years, see [1-4] and references cited therein. In this communication, the approach will be exemplified with electrolytic systems, with special emphasis put on the complex systems where all particular types (acid-base, redox, complexation and precipitation) of chemical equilibria occur in parallel and/or sequentially. All attainable physicochemical knowledge can be involved in calculations and none simplifying assumptions are needed. All analytical prescriptions can be followed. The approach enables all possible (from thermodynamic viewpoint) reactions to be included and all effects resulting from activation barrier(s) and incomplete set of equilibrium data presumed can be tested. The problems involved are presented on some examples of analytical systems considered lately, concerning potentiometric titrations in complex titrand + titrant systems. All calculations were done with use of iterative computer programs MATLAB and DELPHI. [Pg.28]

It was noted that the content of functional groups on the surface of studied A1,03 was 0,92-10 mol/g of acid character for (I), FOS-IO mol/g of basic character for (II). The total content of the groups of both types was 1,70-lO mol/g for (III). The absence of appreciable point deviations from a flat area of titration curves in all cases proves simultaneously charges neutralization character on the same adsoi ption centers and non-depending on their density. The isoelectric points of oxide surfaces have been detenuined from titration curves and have been confirmed by drift method. [Pg.266]

Checking the bath concentration The concentration of bath solution in caustic-based cleaners can be checked by a simple titration method as noted below, while for the remaining types of cleaners, a visual check of the degreased surfaces will be sufficient. The titration method is as follows ... [Pg.401]

There are two types of fluoride lon-selective electrodes available [27] Onon model 96-09-00, a combination fluoride electrode, and model 94-09-00, which requires a reference electrode The author prefers to use Onon model 94-09-00 because it has a longer operational life and is less expensive When an electrode fails, the reference electrode is usually less expensive to replace The Fisher Accumet pH meter, model 825 MP, automatically computes and corrects the electrode slope It gives a direct reading for pH, electrode potential, and concentra tion in parts per million The fluoride lon-specific electrode can be used for direct measurement [2S, 29] or for potenPometric titration with Th" or nitrate solutions, with the electrode as an end point indicator... [Pg.1027]

The method of evaluation of the rate constants for this reaction scheme will depend upon the type of analytical information available. This depends in part upon the nature of the reaction, but it also depends upon the contemporary state of analytical chemistry. Up to the middle of the 20th century, titrimetry was a widely applied means of studying reaction kinetics. Titrimetric analysis is not highly sensitive, nor is it very selective, but it is accurate and has the considerable advantage of providing absolute concentrations. When used to study the A —> B — C system in which the same substance is either produced or consumed in each step (e.g., the hydrolysis of a diamide or a diester), titration results yield a quantity F = Cb + 2cc- Swain devised a technique, called the time-ratio method, to evaluate the rate... [Pg.69]

Isoxazol-5-ones can exist in three different types of structures, cf. 45- 7 (R = H). Early investigators assigned structures to these compounds on the basis of unreliable chemical evidence thus the NH structure 47 was favored because the silver salt of 3-phenyl-isoxazol-5-one reacts with methyl iodide to give a product which was incorrectly (see reference 44) formulated as the iV-incthyl derivatives (cf. also reference 46). Bromine titration data led to assignment of an incorrect structure to 3,4-diphcnylisoxazol-5-one cf. article I (Volume 1), Section II,A. Comparison of the dipole moments of 3-phenyIisoxazol-5-one with those of the methyl derivatives 45 (R = Me) and 46... [Pg.37]

Poloxamers are used primarily in aqueous solution and may be quantified in the aqueous phase by the use of compleximetric methods. However, a major limitation is that these techniques are essentially only capable of quantifying alkylene oxide groups and are by no means selective for poloxamers. The basis of these methods is the formation of a complex between a metal ion and the oxygen atoms that form the ether linkages. Reaction of this complex with an anion leads to the formation of a salt that, after precipitation or extraction, may be used for quantitation. A method reported to be rapid, simple, and consistently reproducible [18] involves a two-phase titration, which eliminates interferences from anionic surfactants. The poloxamer is complexed with potassium ions in an alkaline aqueous solution and extracted into dichloromethane as an ion pair with the titrant, tet-rakis (4-fluorophenyl) borate. The end point is defined by a color change resulting from the complexation of the indicator, Victoria Blue B, with excess titrant. The Wickbold [19] method, widely used to determine nonionic surfactants, has been applied to poloxamer type surfactants 120]. Essentially the method involves the formation in the presence of barium ions of a complex be-... [Pg.768]

The last definition has widespread use in the volumetric analysis of solutions. If a fixed amount of reagent is present in a solution, it can be diluted to any desired normality by application of the general dilution formula V,N, = V N. Here, subscripts 1 and 2 refer to the initial solution and the final (diluted) solution, respectively V denotes the solution volume (in milliliters) and N the solution normality. The product VjN, expresses the amount of the reagent in gram-milliequivalents present in a volume V, ml of a solution of normality N,. Numerically, it represents the volume of a one normal (IN) solution chemically equivalent to the original solution of volume V, and of normality N,. The same equation V N, = V N is also applicable in a different context, in problems involving acid-base neutralization, oxidation-reduction, precipitation, or other types of titration reactions. The justification for this formula relies on the fact that substances always react in titrations, in chemically equivalent amounts. [Pg.330]

Determining the sulfur content in crudes is important because the amount of sulfur indicates the type of treatment required for the distillates. To determine sulfur content, a weighed crude sample (or fraction) is burned in an air stream. All sulfur compounds are oxidized to sulfur dioxide, which is further oxidized to sulfur trioxide and finally titrated with a standard alkali. [Pg.20]

A1C13, or S02 in an inert solvent cause colour changes in indicators similar to those produced by hydrochloric acid, and these changes are reversed by bases so that titrations can be carried out. Compounds of the type of BF3 are usually described as Lewis acids or electron acceptors. The Lewis bases (e.g. ammonia, pyridine) are virtually identical with the Bransted-Lowry bases. The great disadvantage of the Lewis definition of acids is that, unlike proton-transfer reactions, it is incapable of general quantitative treatment. [Pg.23]

This expression enables us to calculate the exact concentration at the equivalence point in any redox reaction of the general type given above, and therefore the feasibility of a titration in quantitative analysis. [Pg.70]

It should be noted that in this example the performance of only one variable, the three analysts, is investigated and thus this technique is called a one-way ANOVA. If two variables, e.g. the three analysts with four different titration methods, were to be studied, this would require the use of a two-way ANOVA. Details of suitable texts that provide a solution for this type of problem and methods for multivariate analysis are to be found in the Bibliography, page 156. [Pg.149]

The various relationships concerning the interconversion between un-ionised and ionised or different resonant forms of indicators referred to in Section 10.7 apply equally well to those indicators used for non-aqueous titrations. However, in this type of titration the colour change exhibited by an indicator at the end point is not always the same for different titrations as it depends upon the nature of the titrand to which it has been added. The colour corresponding to the correct end point may be established by carrying out a potentiometric titration while simultaneously observing the colour change of the indicator. The appropriate colour corresponds to the inflexion point of the titration curve (see Section 15.18). [Pg.283]

The vast majority of complexation titrations are carried out using multidentate ligands such as EDTA or similar substances as the complexone. However, there are other more simple processes which also involve complexation using monodentate or bidentate ligands and which also serve to exemplify the nature of this type of titration. This is demonstrated in the determination outlined in Section 10.44. [Pg.309]

In acid-base titrations the end point is generally detected by a pH-sensitive indicator. In the EDTA titration a metal ion-sensitive indicator (abbreviated, to metal indicator or metal-ion indicator) is often employed to detect changes of pM. Such indicators (which contain types of chelate groupings and generally possess resonance systems typical of dyestuffs) form complexes with specific metal ions, which differ in colour from the free indicator and produce a sudden colour change at the equivalence point. The end point of the titration can also be evaluated by other methods including potentiometric, amperometric, and spectrophotometric techniques. [Pg.311]

The visual metallochromic indicators discussed above form by far the most important group of indicators for EDTA titrations and the operations subsequently described will be confined to the use of indicators of this type nevertheless there are certain other substances which can be used as indicators.11... [Pg.316]


See other pages where Type 1 titrations is mentioned: [Pg.164]    [Pg.168]    [Pg.689]    [Pg.707]    [Pg.248]    [Pg.59]    [Pg.29]    [Pg.260]    [Pg.1902]    [Pg.1284]    [Pg.274]    [Pg.338]    [Pg.341]    [Pg.364]    [Pg.167]    [Pg.412]    [Pg.378]    [Pg.59]    [Pg.185]    [Pg.41]    [Pg.820]    [Pg.163]    [Pg.383]    [Pg.399]    [Pg.261]    [Pg.311]    [Pg.311]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



© 2024 chempedia.info