Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbulent flow tubes

Figure 10-50C. Tube-side (inside tubes) liquid film heat transfer coefficient for Dowtherm . A fluid inside pipes/tubes, turbulent flow only. Note h= average film coefficient, Btu/hr-ft -°F d = inside tube diameter, in. G = mass velocity, Ib/sec/ft v = fluid velocity, ft/sec k = thermal conductivity, Btu/hr (ft )(°F/ft) n, = viscosity, lb/(hr)(ft) Cp = specific heat, Btu/(lb)(°F). (Used by permission Engineering Manual for Dowtherm Heat Transfer Fluids, 1991. The Dow Chemical Co.)... Figure 10-50C. Tube-side (inside tubes) liquid film heat transfer coefficient for Dowtherm . A fluid inside pipes/tubes, turbulent flow only. Note h= average film coefficient, Btu/hr-ft -°F d = inside tube diameter, in. G = mass velocity, Ib/sec/ft v = fluid velocity, ft/sec k = thermal conductivity, Btu/hr (ft )(°F/ft) n, = viscosity, lb/(hr)(ft) Cp = specific heat, Btu/(lb)(°F). (Used by permission Engineering Manual for Dowtherm Heat Transfer Fluids, 1991. The Dow Chemical Co.)...
Flfl. 5-2 Typical data correlation for forced convection in smooth tubes, turbulent flow. [Pg.276]

Fig. 4 Velocity profile of a fluid flowing in a tube—turbulent flow. Fig. 4 Velocity profile of a fluid flowing in a tube—turbulent flow.
Empty tube, laminar flow Empty tube, turbulent flow ... [Pg.106]

As the Reynolds number of the flow in a tube or a channel is increased to beyond a certain value (e.g. 2100 for a tube), turbulent flow sets in. For turbulent flow in a horizontal tube of ratlius R, length L and average axial velocity (i z), a dimensionless quantity/ the Fanning friction factor, is defined as... [Pg.349]

In situations where a low concentration of suspended solids needs to be separated from a liquid, then cross-flow filtration can be used. The most common design uses a porous tube. The suspension is passed through the tube at high velocity and is concentrated as the liquid flows through the porous medium. The turbulent flow prevents the formation of a filter cake, and the solids are removed as a more concentrated slurry. [Pg.74]

CO2 corrosion often occurs at points where there is turbulent flow, such as In production tubing, piping and separators. The problem can be reduced it there is little or no water present. The initial rates of corrosion are generally independent of the type of carbon steel, and chrome alloy steels or duplex stainless steels (chrome and nickel alloy) are required to reduce the rate of corrosion. [Pg.94]

Depending on the type of nebulizer used and its efficiency, there may be initially a significant proportion of large droplets in the aerosol. Heavier than the very fine droplets, the larger droplets are affected by gravity and by turbulent flow in the argon sweep gas, which cause them to deposit onto the walls of the transfer tube. [Pg.400]

Averaging the velocity using equation 50 yields the weU-known Hagen-Poiseuille equation (see eq. 32) for laminar flow of Newtonian fluids in tubes. The momentum balance can also be used to describe the pressure changes at a sudden expansion in turbulent flow (Fig. 21b). The control surface 2 is taken to be sufficiently far downstream that the flow is uniform but sufficiently close to surface 3 that wall shear is negligible. The additional important assumption is made that the pressure is uniform on surface 3. The conservation equations are then applied as follows ... [Pg.108]

In the forced convection heat transfer, the heat-transfer coefficient, mainly depends on the fluid velocity because the contribution from natural convection is negligibly small. The dependence of the heat-transfer coefficient, on fluid velocity, which has been observed empirically (1—3), for laminar flow inside tubes, is h for turbulent flow inside tubes, h and for flow outside tubes, h. Flow may be classified as laminar or... [Pg.483]

Reynolds Number. The Reynolds number, Ke, is named after Osborne Reynolds, who studied the flow of fluids, and in particular the transition from laminar to turbulent flow conditions. This transition was found to depend on flow velocity, viscosity, density, tube diameter, and tube length. Using a nondimensional group, defined as p NDJp, the transition from laminar to turbulent flow for any internal flow takes place at a value of approximately 2100. Hence, the dimensionless Reynolds number is commonly used to describe whether a flow is laminar or turbulent. Thus... [Pg.483]

Friction Coefficient. In the design of a heat exchanger, the pumping requirement is an important consideration. For a fully developed laminar flow, the pressure drop inside a tube is inversely proportional to the fourth power of the inside tube diameter. For a turbulent flow, the pressure drop is inversely proportional to D where n Hes between 4.8 and 5. In general, the internal tube diameter, plays the most important role in the deterrnination of the pumping requirement. It can be calculated using the Darcy friction coefficient,, defined as... [Pg.483]

The minimum velocity requited to maintain fully developed turbulent flow, assumed to occur at Reynolds number (R ) of 8000, is inside a 16-mm inner diameter tube. The physical property contribution to the heat-transfer coefficient inside and outside the tubes are based on the following correlations (39) ... [Pg.508]

Flow in tubular reactors can be laminar, as with viscous fluids in small-diameter tubes, and greatly deviate from ideal plug-flow behavior, or turbulent, as with gases, and consequently closer to the ideal (Fig. 2). Turbulent flow generally is preferred to laminar flow, because mixing and heat transfer... [Pg.505]

In the Sulser-MWB process the naphthalene fractions produced by the crystallisation process are stored in tanks and fed alternately into the crystalliser. The crystalliser contains around 1100 cooling tubes of 25-mm diameter, through which the naphthalene fraction passes downward in turbulent flow and pardy crystallises out on the tube walls. The residual melt is recycled and pumped into a storage tank at the end of the crystallisation process. The crystals that have been deposited on the tube walls are then pardy melted for further purification. Following the removal of the drained Hquid, the purified naphthalene is melted. Four to six crystallisation stages are required to obtain refined naphthalene with a crystallisation point of 80°C, depending on the quaHty of the feedstock. The yield is typically between 88 and 94%, depending on the concentration of the feedstock fraction. [Pg.341]

For the turbulent flow of water in layer form down the walls of vertical tubes the dimensional equation of McAdams, Drew, and Bays [Trans. Am. Soc. Mech. Eng., 62, 627 (1940)] is recommended ... [Pg.562]

Circular Tubes Numerous relationships have been proposed for predicting turbulent flow in tubes. For high-Prandtl-number fluids, relationships derived from the equations of motion and energy through the momentum-heat-transfer analogy are more complicated and no more accurate than many of the empirical relationships that have been developed. [Pg.562]

For turbulent flow in smooth tubes, the Blasius equation gives the friction facdor accurately for a wide range of Reynolds numbers. [Pg.636]

In laminar flow,/is independent of /D. In turbulent flow, the friction factor for rough pipe follows the smooth tube curve for a range of Reynolds numbers (hydrauhcaUy smooth flow). For greater Reynolds numbers,/deviates from the smooth pipe cui ve, eventually becoming independent of Re. This region, often called complete turbulence, is frequently encountered in commercial pipe flows. The Reynolds number above which / becomes essentially independent of Re is (Davies, Turbulence Phenomena, Academic, New York, 1972, p. 37) 20[3.2-2.46ln( /D) ... [Pg.637]

Turbulent Flow The correlation by Grimison (Trans. ASME, 59, 583—.594 [1937]) is recommended for predicting pressure drop for turbulent flow (Re > 2,000) across staggered or in-hne tube banks for tube spacings [(a/Dt), (b/Dt)] ranging from 1.25 to 3.0. The pressure drop is given by... [Pg.662]

For turbulent flow through shallow tube banks, the average friction factor per row will be somewhat greater than indicated by Figs. 6-42 and 6-43, which are based on 10 or more rows depth. A 30 percent increase per row for 2 rows, 15 percent per row lor 3 rows and 7 percent per row for 4 rows can be taken as the maximum likely to be encountered (Boucher and Lapple, Chem. Eng. Prog., 44, 117—134 [1948]). [Pg.663]

Pressures substantially lower than true impact pressures are obtained with pitot tubes in turbulent flow of dilute polymer solutions [see Halliwell and Lewkowicz, Phys. Fluids, IS, 1617-1625 (1975)]. [Pg.887]

Favored locations for erosion-corrosion are areas exposed to high-flow velocities or turbulence. Tees, bends, elbows (Fig. 11.5), pumps, valves (Fig. 11.6), and inlet and outlet tube ends of heat exchangers (Fig. 11.7) can be affected. Turbulence may be created downstream of crevices, ledges (Fig. 11.8), abrupt cross-section changes, deposits, corrosion products, and other obstructions that change laminar flow to turbulent flow. [Pg.242]

Visually, the sites resemble mechanically induced gouges or indentions in the tube wall. However, examinations of the microstructure at these sites revealed no distortion of the metal, which would certainly occur had the indentions been mechanically induced. The erosive character of the highly localized turbulent flow was the predominant aspect responsible for the metal loss, there being little or perhaps no contribution from corrosion of the metal. [Pg.253]

Turbulent flow created in the canister and at the canister and tube interface resulted in the metal loss. [Pg.263]

Damage will be confined to the bubble-collapse region, usually immediately downstream of the low-pressure zone. Components exposed to high velocity or turbulent flow, such as pump impellers and valves, are subject. The suction side of pumps (Case History 12.3) and the discharge side of regulating valves (Fig. 12.6 and Case History 12.4) are frequently affected. Tube ends, tube sheets, and shell outlets in heat exchanger equipment have been affected, as have cylinder liners in diesel engines (Case History 12.1). [Pg.275]

The value of tire heat transfer coefficient of die gas is dependent on die rate of flow of the gas, and on whether the gas is in streamline or turbulent flow. This factor depends on the flow rate of tire gas and on physical properties of the gas, namely the density and viscosity. In the application of models of chemical reactors in which gas-solid reactions are caiTied out, it is useful to define a dimensionless number criterion which can be used to determine the state of flow of the gas no matter what the physical dimensions of the reactor and its solid content. Such a criterion which is used is the Reynolds number of the gas. For example, the characteristic length in tire definition of this number when a gas is flowing along a mbe is the diameter of the tube. The value of the Reynolds number when the gas is in streamline, or linear flow, is less than about 2000, and above this number the gas is in mrbulent flow. For the flow... [Pg.277]

This formula is another variation on the Affinity Laws. Monsieur s Darcy and VVeisbach were hydraulic civil engineers in France in the mid 1850s (some 50 years before Mr. H VV). They based their formulas on friction losses of water moving in open canals. They applied other friction coefficients from some private experimentation, and developed their formulas for friction losses in closed aqueduct tubes. Through the years, their coefficients have evolved to incorporate the concepts of laminar and turbulent flow, variations in viscosity, temperature, and even piping with non uniform (rough) internal. surface finishes. With. so many variables and coefficients, the D/W formula only became practical and popular after the invention of the electronic calculator. The D/W forntula is extensive and eomplicated, compared to the empirieal estimations of Mr. H W. [Pg.99]

Flow in empty tubes has a relatively narrow band of velocities—or Reynolds numbers from 2000 to 10000—wherein the character changes from laminar to turbulent. In packed beds, even the laminar flow does not mean that motion is linear or parallel to the surface. Due to the many turns between particles, stable eddies develop and therefore the difference between laminar and turbulent flow is not as pronounced as in empty tubes. [Pg.18]

For turbulent flow across tube banks, a modified Fanning equation and modified Reynold s number are given. [Pg.27]

The inside film coefficient represents the resistance to heat flow caused by the change in flow regime from turbulent flow in the center of the tube to laminar flow at the tube surface. The inside film coefficient can be calculated from ... [Pg.15]

Pierce proposes and illustrates good agreement between the test data and the correlation for a smooth continuous curve for the Colburn factor over the entire range of Reynolds numbers for the laminar, transition, and turbulent flow regimes inside smooth tubes ... [Pg.99]

Liquids in turbulent flow in circular helical coils should be handled the same as for gases or use 1.2 Xhj for straight tubes. [Pg.101]

Film coefficients for turbulent flow that exist on the outside or shell side of the conventional baffled shell and tube exchanger are correlated for hydrocarbons, organic compounds, water, aqueous solutions, and gases by... [Pg.101]

Figure 10-67B. Correlation of McAdams representing the condensing film coefficient on the outside of vertical tubes, integrated for the entire tube length. This represents the streamline transition and turbulent flow conditions for Prandtl numbers 1 and 5. Do not extrapolate Prandtl numbers, Pr beyond 5. (Used by permission Engineering Data Book II 1984, Wolverine Tube, Inc.)... Figure 10-67B. Correlation of McAdams representing the condensing film coefficient on the outside of vertical tubes, integrated for the entire tube length. This represents the streamline transition and turbulent flow conditions for Prandtl numbers 1 and 5. Do not extrapolate Prandtl numbers, Pr beyond 5. (Used by permission Engineering Data Book II 1984, Wolverine Tube, Inc.)...
Fluid flow is also critical for proper operation of a hydraulic system. Turbulent flow should be avoided as much as possible. Clean, smooth pipe or tubing should be used to provide laminar flow and the lowest friction possible within the system. Sharp, close radius bends and sudden changes in cross-sectional area are avoided. [Pg.592]


See other pages where Turbulent flow tubes is mentioned: [Pg.417]    [Pg.16]    [Pg.417]    [Pg.16]    [Pg.400]    [Pg.100]    [Pg.110]    [Pg.498]    [Pg.64]    [Pg.459]    [Pg.560]    [Pg.610]    [Pg.638]    [Pg.1041]    [Pg.287]    [Pg.116]    [Pg.131]   
See also in sourсe #XX -- [ Pg.454 , Pg.473 , Pg.474 , Pg.475 , Pg.476 , Pg.477 , Pg.478 , Pg.479 , Pg.480 , Pg.481 ]




SEARCH



Circular tube turbulent flow

Flow tubing

Tube banks turbulent flow

Tube flow

Tube flow turbulent heat transfer

Turbulence flow

Turbulent Flow in Straight, Smooth Ducts, Pipes, and Tubes of Circular Cross Section

Turbulent Flow in a Tube

Turbulent Flow in a Tube of Circular Cross-Section

Turbulent flow

Turbulent flow Turbulence

Turbulent flow in circular tubes

Turbulent flow in tubes

Turbulent flow noncircular tubes

Turbulent flow tube annulus

© 2024 chempedia.info