Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triton determination

Two methods of sample preparation were investigated. The former is dilution of blood semm with 0.1% Triton X-100, the latter is aeid mierowave digestion. As evaluated, the most adequate mineralization proeedure for determining the majority of elements in blood semm by ICP AES is aeid mierowave digestion. However, the ICP AES determination of abundant elements (B, Si, Mn), whieh present in semm at 0.001-0.01 ppm levels should be follow sample dilution with Triton X-100. [Pg.360]

The PemB cellular localisation was determined both in E. chrysanthenu and in an E. coli recombinant strain by Western blot of the cell fractions with a PemB-antiserum. No PemB was detected in the culture supernatant and only trace amounts were found in the soluble cell fractions - periplasm and cytoplasm (Figure 2). PemB was found mostly in the total membrane fraction from which it could be completely extracted by Triton X-100/Mg2+ and partially extracted by Sarkosyl (Figure 2). This behaviour is typical of inner membrane proteins, but since some exceptions have been noticed it does not positively indicate the PemB localisation (15). We performed cell membrane fractionation in sucrose density gradient centrifugation both by sedimentation and flotation, using several markers of inner and outer membrane vesicles. PemB was found in the outer membrane vesicles (data not shown). [Pg.839]

Gruner R, Seidel A, Winter R. 1981. The initial early distribution of monomeric 239Pu and 241Am in rat liver as determined by triton WR 1339 injection. Radiat Res 85 367-379. [Pg.238]

Normal-phase chromatography is still widely used for the determination of nonpolar additives in a variety of commercial products and pharmaceutical formulations, e.g. the separation of nonpolar components in the nonionic surfactant Triton X-100. Most of the NPLC analyses of polymer additives have been performed in isocratic mode [576]. However, isocratic HPLC methods are incapable of separating a substantial number of industrially used additives [605,608,612-616], Normal-phase chromatography of Irgafos 168, Irganox 1010/1076/3114 was shown [240]. NPLC-UV has been used for quantitative analysis of additives in PP/(Irganox 1010/1076, Irgafos 168) after Soxhlet extraction (88%... [Pg.246]

It is important that any method for surfactant analysis maintains the same oligomer distribution in the extracted samples. LLE and SPE are generally combined with chromatographic methods for separation and resolution of non-ionic surfactants into their ethoxamers. An alternative is the use of SPME-HPLC, recently reported by Chen and Pawliszyn [141]. Alkylphenol ethoxylate surfactants such as Triton X-100 and various Rexol grades in water were determined by means of SPME-NPLC-UV (at 220 nm) [142]. Detection limits for individual alkylphenol ethoxamers were at low ppb level. [Pg.449]

Yang et al. [389] rapidly distinguished compounds extracted from paper, using on-line SFE-SFC-FHR in conjunction with principal component analysis. The quantitative determination of the surfactant mixture Triton X-100 and other complex oligoether surfactants by means of cSFC-FTIR flow-cells has been reported [390,391]. Practical applications of SFC-FTIR include the determination of nonvolatile compounds from microwave-susceptible packaging that may migrate into heated food. Another application is the analysis of fibre finishes on fibre/textile matrices. [Pg.479]

Apoptosis assay. ECRF24 or A2780 cells were seeded on 6-well plates (2 X 105 cells/ well) and grown 24 hours in complete medium before treatment. Compounds 1-3 were freshly dissolved in DMSO, diluted in complete medium and added to the cells at the final concentrations indicated in Table 2. After incubation for 72 h apoptosis was measured by flow cytometric determination of subdiploid cells after DNA extraction and subsequent staining with propidium iodide (PI) as described previously10. Briefly, cells were harvested and subsequently fixed in 70% ethanol at —20°C. After 2 h the cells were re-suspended in DNA extraction buffer (45 mM Na2HP04, 2.5 mM citric acid, and 1% Triton X-100, pH 7.4) for 20 min at 37°C. PI was added to a final concentration of 20 pg/mL and log scale red fluorescence was analyzed on a FACSCalibur (BD Biosciences, NJ, U.S.). [Pg.5]

Aguilera de Benzo Z, Fraile R, Carrion N, et al. 1989. Determination of lead in whole blood by electrothermal atomization atomic absorption spectrometry using tube and platform atomizers and dilution with Triton X-100. Journal of Analytical and Atmospheric Spectrometry 4 397-400. [Pg.484]

To date, a few methods have been proposed for direct determination of trace iodide in seawater. The first involved the use of neutron activation analysis (NAA) [86], where iodide in seawater was concentrated by strongly basic anion-exchange column, eluted by sodium nitrate, and precipitated as palladium iodide. The second involved the use of automated electrochemical procedures [90] iodide was electrochemically oxidised to iodine and was concentrated on a carbon wool electrode. After removal of interference ions, the iodine was eluted with ascorbic acid and was determined by a polished Ag3SI electrode. The third method involved the use of cathodic stripping square wave voltammetry [92] (See Sect. 2.16.3). Iodine reacts with mercury in a one-electron process, and the sensitivity is increased remarkably by the addition of Triton X. The three methods have detection limits of 0.7 (250 ml seawater), 0.1 (50 ml), and 0.02 pg/l (10 ml), respectively, and could be applied to almost all the samples. However, NAA is not generally employed. The second electrochemical method uses an automated system but is a special apparatus just for determination of iodide. The first and third methods are time-consuming. [Pg.81]

Luther et al. [92] have described a procedure for the direct determination of iodide in seawater. By use of a cathodic stripping square-wave voltammetry, it is possible to determine low and sub-nanomolar levels of iodide in seawater, freshwater, and brackish water. Precision is typically 5% (la). The minimum detection limit is 0.1 - 0.2 nM (12 parts per trillion) at 180 sec deposition time. Data obtained on Atlantic Ocean samples show similar trends to previously reported iodine speciation data. This method is more sensitive than previous methods by 1-2 orders of magnitude. Triton X-100 added to the sample enhances the mercury electrode s sensitivity to iodine. [Pg.82]

Howard [27] determined dissolved aluminium in seawater by the micelle-enhanced fluorescence of its lumogallion complex. Several surfactants (to enhance fluorescence and minimise interferences), used for the determination of aluminium at very low concentrations (below 0.5 pg/1) in seawaters, were compared. The surfactants tested in preliminary studies were anionic (sodium lauryl sulfate), non-ionic (Triton X-100, Nonidet P42, NOPCO, and Tergital XD), and cationic (cetyltrimethylammonium bromide). Based on the degree of fluorescence enhancement and ease of use, Triton X-100 was selected for further study. Sample solutions (25 ml) in polyethylene bottles were mixed with acetate buffer (pH 4.7, 2 ml) lumogallion solution (0.02%, 0.3 ml) and 1,10-phenanthroline (1.0 ml to mask interferences from iron). Samples were heated to 80 °C for 1.5 h, cooled, and shaken with neat surfactant (0.15 ml) before fluorescence measurements were made. This procedure had a detection limit at the 0.02 pg/1 level. The method was independent of salinity and could therefore be used for both freshwater and seawater samples. [Pg.130]

Crisp et al. [212] has described a method for the determination of non-ionic detergent concentrations between 0.05 and 2 mg/1 in fresh, estuarine, and seawater based on solvent extraction of the detergent-potassium tetrathiocyana-tozincate (II) complex followed by determination of extracted zinc by atomic AAS. A method is described for the determination of non-ionic surfactants in the concentration range 0.05-2 mg/1. Surfactant molecules are extracted into 1,2-dichlorobenzene as a neutral adduct with potassium tetrathiocyanatozin-cate (II), and the determination is completed by AAS. With a 150 ml water sample the limit of detection is 0.03 mg/1 (as Triton X-100). The method is relatively free from interference by anionic surfactants the presence of up to 5 mg/1 of anionic surfactant introduces an error of no more than 0.07 mg/1 (as Triton X-100) in the apparent non-ionic surfactant concentration. The performance of this method in the presence of anionic surfactants is of special importance, since most natural samples which contain non-ionic surfactants also contain anionic surfactants. Soaps, such as sodium stearate, do not interfere with the recovery of Triton X-100 (1 mg/1) when present at the same concentration (i.e., mg/1). Cationic surfactants, however, form extractable nonassociation compounds with the tetrathiocyanatozincate ion and interfere with the method. [Pg.403]

Determination of lead in 70 pL samples of whole blood can be carried out in a few minutes by a procedure including treatment with a matrix-modifying solution containing hydrochloric acid, Hg(II) ions, Triton X-100 and Bi(III) as internal standard. After deposition of lead amalgam on a glassy carbon electrode by a pulsed potential cycle, analysis... [Pg.436]

The methods used were acrosin proteolytic activity (APA) assay (with gelatin) and acrosin activity assay with N-a-benzoyl-DL-arginine-p-nitroanihde (BAPNA)-Triton X 100, and BAPNA assay for trypsin activity [9-11]. The antioxidant activity was tested spectrometrical with ABTS+ [12]. Cytotoxicity of extracts was determined by MTT Cell Proliferation Assay [13]. [Pg.353]

The initial mixture and each time point are then assayed for doxorubicin and lipid. Lipid concentrations can be quantified by the phosphate assay (see above) or by liquid scintillation counting of an appropriate radiolabel. Doxorubicin is quantified by an absorbance assay (see below). The percent uptake at any time point (e.g., t = 30 minutes) is determined by %-uptake = [(D/L), =30minutes] x 100/[(D/L) inuiai]. Doxorubicin can be assayed by both a fluorescence assay and an absorbance assay, but we find the latter to be more accurate. The standard curve consists of four to five cuvettes containing 0 to 150 nmol doxorubicin in a volume of 0.1 mL samples to be assayed are of the same volume. To each tube is added 0.9 mL of 1% (v/v) Triton X-100 (in water) solution. For saturated lipid systems such as DSPC/Chol, the tubes should be heated in a boiling water bath for 10 to 15 seconds, until the detergent turns cloudy. Samples are allowed to cool, and absorbance is read at 480 nm on a UV/Visible spectrophotometer. [Pg.38]

DNA and/or protein vaccine entrapment in DRV liposomes is monitored by measuring the vaccine in the suspended pellet and combined supernatants. The most convenient way to monitor DNA entrapment is by using radio-labelled or DNA. For protein entrapment, the use of I-labelled protein tracer is recommended. If a radiolabel is not available or cannot be used, appropriate quantitative techniques should be employed. To determine DNA or protein by such techniques, a sample of the liposome suspension is mixed with Triton X-100 (up to 5% final concentration) or, preferably, with isopropanol (1 1 volume ratio) so as to liberate the entrapped materials. However, if Triton X-100 or the solubilized liposomal lipids interfere with the assay of the materials, liposomal lipids or the DNA must be extracted using appropriate techniques (6). Entrapment values for protein and DNA, whether alone or coentrapped, range between about 20% to 80% (protein) and 30%i to 100%i (DNA) of the initial material depending on the DNA or protein used and, in the case of DNA, the presence or absence of cationic charge. Values are highest for DNA when it is entrapped into cationic DRV (typical values in Table 1). [Pg.238]

Recently, a human sperm H2B was identified that is part of protein complex that specifically binds the telomere DNA repeat [123]. This telomere-binding complex is extracted by conditions (a solution containing 0.5% Triton X-100 and 100 mM NaCl) that do not extract nucleosomal H2B, suggesting that this H2B is not extracted from a typical nucleosomal structure. The structure of this sperm H2B has not been determined. [Pg.196]


See other pages where Triton determination is mentioned: [Pg.199]    [Pg.384]    [Pg.116]    [Pg.823]    [Pg.134]    [Pg.461]    [Pg.842]    [Pg.649]    [Pg.116]    [Pg.467]    [Pg.149]    [Pg.126]    [Pg.221]    [Pg.32]    [Pg.346]    [Pg.76]    [Pg.474]    [Pg.435]    [Pg.770]    [Pg.141]    [Pg.106]    [Pg.95]    [Pg.188]    [Pg.117]    [Pg.1097]    [Pg.1118]    [Pg.127]    [Pg.355]    [Pg.192]    [Pg.103]    [Pg.21]    [Pg.156]    [Pg.585]    [Pg.200]   
See also in sourсe #XX -- [ Pg.56 ]




SEARCH



Tritonal

© 2024 chempedia.info