Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tris synthesis

Although the utilization of the Diels-Alder synthesis as a step-growth reaction for polymerization requires, in most cases, rather unusual monomers, an occasional lengthy and trying synthesis, torturous purifications, and, in certain cases, difficult reaction conditions, it does afford high... [Pg.658]

Freeman F, Rabarge KD (1985) Electrophile-mediated cyclizations in carbohydrate chtanis-try synthesis of highly functionalized ribofuranose and ribopyranose compounds. Tetrahedron Lett 26 1943-1946... [Pg.178]

Maggini M, Done A, Scorrano G and Prato M 1995 Synthesis of a [60]fullerene derivative covalently linked to a ruthenium (II) tris(bipyridine) complex J. Chem. Soc., Chem. Commun. 845-6... [Pg.2436]

How do chemists find a pathway to the synthesis of a new organic compound They try to find suitable starting materials and powerful reactions for the synthesis of the target compound. Thus, synthesis design and chemical reactions are deeply linked, since a chemical reaction is the instrument by which chemists synthesize their compounds synthesis design is a chemist s major strategy to find the most suitable procedure for a synthesis problem. [Pg.567]

In the following decades, chemists tried to utilize more and more the knowledge on reactions which had already been gained. A number of landmark syntheses represent the change to modern chemistry, such as the synthesis of the estrogenic steroid equilenin (W. Bachmann, 1939), of pyridoxine (K. Folkers, 1939), and of quinine (R.B. Woodward, W. von E. Doering, 1944) [23]. [Pg.568]

The Japanese program system AlPHOS is developed by Funatsu s group at Toyo-hashi Institute of Technology [40]. AlPHOS is an interactive system which performs the retrosynthetic analysis in a stepwise manner, determining at each step the synthesis precursors from the molecules of the preceding step. AlPHOS tries to combine the merits of a knowledge-based approach with those of a logic-centered approach. [Pg.576]

From time to time during the programme, 1 shall break off from introducing new ideas and help you consolidate what you ve aheady learnt with some review problems. These are meant to be realistic problems showing why synthesis is important and should let you try out your growing skills. You can either do the review problems as you meet them or come back later and use them as revision material or combine both methods by doing one or two now and the rest later. These remarks apply to all the review problems and 1 won t repeat them each time. [Pg.11]

Woodward tried all these different routes except the one based on the 1,6-dicarbonyl relationship. AU were successful, but he eventually chose the route corresponding to a and c. He discusses this synthesis at length in the 1963 reference. [Pg.65]

The carbene synthon might be difficult, but since the olefin is conjugated with a carbonyl group we could try a sulphur ylid as a nucleopliilic carbene equivalent (as in frame 283). Synthesis The diene could be made by this route ... [Pg.116]

Synthesis Though the ester 363A has been made this wa (J. Indian Chem. Soc.. 1924, 1, 298) in 60% yield, the rest of the synthesis has not yet been tried as far as 1 know. [Pg.117]

CHEOPS (we tested Version 3.0.1) is a program for predicting polymer properties. It consists of two programs The analysis program allows the user to draw the repeat unit structure and will then compute a whole list of properties the synthesis program allows the user to specify a class of polymers and desired properties and will then try the various permutations of the functional groups to find ones that fit the requirements. On a Pentium Pro 200 system, the analysis computations were essentially instantaneous and the synthesis computations could take up to a few minutes. There was no automated way to transfer information between the two programs. [Pg.353]

To separate the oil added an equal volume of fresh cool water (note waited until solution cooled before adding the water). The oil started to drop out perfectly, used DCM to extract all traces of the oil. This woik up is by far the cleanest, easiest and simplest to date... (This dreamer was tried all method of ketone synthesis)... Once the oil was extracted, the extracts were pooled washed with sodium bicarbonate lx, saturated solution of NaCI 1x, and two washes with fresh dHzO... Some time was required for the work up as there was a little emulsion from the use of the base wash and then with the first water wash. The JOC ref suggested using an alumina column to remove the catalyst (could be a better way to go). [Pg.81]

Homologues in principle can also be prepared from RCH(Br)-C(8r)=CH2 but for the synthesis of these starting compounds three steps have to be carried out. The dehalogenation procedure has also been used in the preparation of di- and tri-fluoroal1enes. ... [Pg.118]

Recent syntheses of steroids apply efficient strategies in which open-chain or monocyclic educts with appropiate side-chains are stereoselectively cyclized in one step to a tri- or tetracyclic steroid precursor. These procedures mimic the biochemical synthesis scheme where acyclic, achiral squalene is first oxidized to a 2,3-epoxide containing one chiral carbon atom and then enzymatically cyclized to lanostetol with no less than seven asymmetric centres (W.S. Johnson, 1%8, 1976 E.E. van Tamden, 1968). [Pg.279]

The cyclization to form very congested quaternary carbon centers involving the intramolecular insertion of di-, tri-, and tetrasubstituted alkenes is particularly useful for natural products synthesis[l36-138], In the total synthesis of gelsemine, the cyclization of 166 has been carried out, in which very severe steric hindrance is e.xpected. Interestingly, one stereoisomer 167... [Pg.152]

The coupling of the enol triflate 703 with the vinylstannane 704[397] has been applied to the synthesis of glycinoeclepin[576]. The introduction of a (Z)-propenyl group in the / -lactam derivative 705 proceeds by use of tri-2-furylphosphine[577]. However, later a smooth reaction to give the propenyl-iactam in 82% yield was achieved simply by treating with Pd(OAc)2 in NMP or CH2CI2 for 3-5 min without addition of LiCI and the phosphine ligand[578]. [Pg.232]

Direct addition of ammonia to olefmic bonds would be an attractive method for amine synthesis, if it could be carried out smoothly. Like water, ammonia reacts with butadiene only under particular reaction conditions. Almost no reaction takes place with pure ammonia in organic solvents. The presence of water accelerates the reaction considerably. The reaction of aqueous ammonia (28%) with butadiene in MeCN in the presence orPd(OAc)i and PhjP at 80 C for 10 h gives tri-2,7-octadienylamine (47) as the main product, accompanied by a small amount of di-2,7-octadienylamine (46)[46,47], Isomeric branched... [Pg.430]

I undertook the present task to give a birds-eye view of the broad field of palladium in organic synthesis. 1 have tried to accomplish this ttisk by citing many references these were selected from a much larger number which I have collected over the years. I tried to be as comprehensive as possible by selecting those references which reported original ideas and new reactions, or evident synthetic utility. Synthetic utility is clearly biased towards catalytic rather than stoichiometric reactions and this emphasis is apparent in the selection of the... [Pg.559]

Both reactants m the Williamson ether synthesis usually originate m alcohol pre cursors Sodium and potassium alkoxides are prepared by reaction of an alcohol with the appropriate metal and alkyl halides are most commonly made from alcohols by reaction with a hydrogen halide (Section 4 7) thionyl chloride (Section 4 13) or phosphorus tri bromide (Section 4 13) Alternatively alkyl p toluenesulfonates may be used m place of alkyl halides alkyl p toluenesulfonates are also prepared from alcohols as their imme diate precursors (Section 8 14)... [Pg.673]

The most significant commercial product is barium titanate, BaTiO, used to produce the ceramic capacitors found in almost all electronic products. As electronic circuitry has been rniniaturized, demand has increased for capacitors that can store a high amount of charge in a relatively small volume. This demand led to the development of highly efficient multilayer ceramic capacitors. In these devices, several layers of ceramic, from 25—50 ]lni in thickness, are separated by even thinner layers of electrode metal. Each layer must be dense, free of pin-holes and flaws, and ideally consist of several uniform grains of fired ceramic. Manufacturers are trying to reduce the layer thickness to 10—12 ]lni. Conventionally prepared ceramic powders cannot meet the rigorous demands of these appHcations, therefore an emphasis has been placed on production of advanced powders by hydrothermal synthesis and other methods. [Pg.500]

Tris(2,4-pentanedionato)iron(III) [14024-18-1], Fe(C H202)3 or Fe(acac)3, forms mby red rhombic crystals that melt at 184°C. This high spin complex is obtained by reaction of iron(III) hydroxide and excess ligand. It is only slightly soluble in water, but is soluble in alcohol, acetone, chloroform, or benzene. The stmcture has a near-octahedral arrangement of the six oxygen atoms. Related complexes can be formed with other P-diketones by either direct synthesis or exchange of the diketone into Fe(acac)3. The complex is used as a catalyst in oxidation and polymerization reactions. [Pg.438]

The reaction of methoxy-substituted 1,4-dihydroatomatic systems is a general one. Other condensed systems react ia a similar manner, for example, 3,6-dimethoxy-1,4,S,8-tetrahydronaphtha1ene and derivatives of anthracene (35) and xanthene (36) (74). The proposed method enables synthesis of the tri-and tetracarbocyanines where the whole chromophore is iategrated iato a rigidizing skeleton. Asymmetrical polymethines can also be obtained similarly. [Pg.498]

These oxazolines have cationic surface-active properties and are emulsifying agents of the water-in-oil type. They ate acid acceptors and, in some cases, corrosion inhibitors (see Corrosion). Reaction to oxazoline also is useful as a tool for determination of double-bond location in fatty acids (2), or for use as a protective group in synthesis (3). The oxazolines from AEPD and TRIS AMINO contain hydroxyl groups that can be esterified easily, giving waxes (qv) with saturated acids and drying oils (qv) with unsaturated acids. [Pg.17]

Formaldehyde reacts with the hydrogen on the a-carbon of the fatty acid from which the oxazoline was formed to yield a vinyl monomer which can be polymerized or utilized for synthesis (4). Thus, esters of the oxazoline formed from TRIS AMINO undergo the reaction... [Pg.17]

Vinyl chloride has gained worldwide importance because of its industrial use as the precursor to PVC. It is also used in a wide variety of copolymers. The inherent flame-retardant properties, wide range of plastici2ed compounds, and low cost of polymers from vinyl chloride have made it a major industrial chemical. About 95% of current vinyl chloride production worldwide ends up in polymer or copolymer appHcations (83). Vinyl chloride also serves as a starting material for the synthesis of a variety of industrial compounds, as suggested by the number of reactions in which it can participate, although none of these appHcations will likely ever come anywhere near PVC in terms of volume. The primary nonpolymeric uses of vinyl chloride are in the manufacture of vinyHdene chloride and tri- and tetrachloroethylene [127-18-4] (83). [Pg.423]

Synthesis. One of the more common routes for the synthesis of aminoboranes involves the aminolysis of the appropriate boron hahde. Trisaminoboranes are most convenientiy prepared by adding BCI3 to an excess of amine in an inert solvent at low temperatures (42). For example for tris(dimetby1amino)borane [4375-83-1]. ... [Pg.262]


See other pages where Tris synthesis is mentioned: [Pg.299]    [Pg.729]    [Pg.54]    [Pg.147]    [Pg.198]    [Pg.199]    [Pg.171]    [Pg.327]    [Pg.349]    [Pg.483]    [Pg.68]    [Pg.525]    [Pg.11]    [Pg.259]    [Pg.164]    [Pg.34]    [Pg.35]    [Pg.329]    [Pg.80]    [Pg.526]    [Pg.109]   
See also in sourсe #XX -- [ Pg.187 ]




SEARCH



1.3.5- Triazine 2,4,6-tris -, ring synthesi

Alcalase-catalysed Syntheses of Hydrophilic Di- and Tri-peptides in Organic Solvents

Alkanes, tris synthesis

Alkanes, tris synthesis via production of boron-stabilized carbanions

Amidines tris alkane synthesis

Amidinium salts tris alkane synthesis

D-Galactose, 2,3,4-tri-O-benzylglycoside synthesis

D-Glucose, 2,3,4-tri-O-benzylglycoside synthesis

Experiment 5.1 Synthesis of Tris(bidentate

General Syntheses of Tris(bidentate) Complexes

Guanidinium salts tris alkane synthesis

Ketene aminals tris alkane synthesis

Meso-5,10,15-tris-(Pentafluoropheny synthesis

Methyl 2,3,4-tri-O-benzoyl-6-bromo-6deoxy-p-D-, synthesis chromatography

Nickel, tris nitrile synthesis

Ortho amides tris alkane synthesis

Ortho esters tris alkane synthesis

Oxygen Palladium, tris synthesis

Palladium, tris synthesis

Pyrrole, 1 -methyl-2,3,5-tris synthesis

Synthesis of Tri- and Higher-saccharides

Synthesis of Tri- and Tetra-saccharides

Synthesis of Tri-, Tetra-, and Penta-saccharides

Synthesis of Tris-p-(3-phenylpropyl)phenylphosphine

Synthesis of di-, tri-, and

Synthesis of macrobicyclic phosphorus-containing d-metal tris-diiminates

Synthesis of macrobicyclic tris-dioximates

Tri terpenes synthesis

Tris benzenes, synthesis

Tris complexes synthesis

Tris cyclopentadiene, synthesis

Tris cyclopropane, synthesis

Tris fulvenes, synthesis

Tris germanes synthesis

Tris methane synthesis

Tris methyl bromide, synthesis

Tris methyl lithium, synthesis

Tris orthoformates, synthesi

© 2024 chempedia.info