Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triphenylmethane, acidity

The photochemistry of four triphenylmethane acid dyes was studied in poly(vinyl alcohol), methylcellulose and gelatin films. These model systems were chosen with a view to elucidating the complex free-radical reactions taking place in the heterogeneous dyed wool/ water/air system on exposure to UV radiation. The dye fading mechanism seems to involve an excited triplet state of the dye molecule [ 164] The rate of fading is governed by ... [Pg.160]

A study of some triphenylmethane acid dyes on model polymer systems has revealed the operation of a complex fading mechanism which probably involves excited triplet-state dye molecules [70]. [Pg.338]

This consists of the phthalocyanine dyes, an example of this group being Coomassie Turquoise Blue 3G. This is a trisulphonated derivative of copper phthalocyanine. It dyes wool a very bright greenish blue shade. Its fastness to light is better than the triphenylmethane acid dyes which alone will give comparable shades. [Pg.381]

Triphenylmethane acid dye. Commercially available. Used as 0.1% soln. in 20% EtOH or 0.04% aq. soln. in extraction-photometric detn. of Fe (//), Zn, Cu, Cd, Ag acid-base indicator (pH range 3-4.6 colour change yellow- purple) adsorption indicator. Blue cryst. (AcOH/Me2CO). Sol. EtOH, alkalis si. sol. H2O, Et20. Mp 279° dec. 3.89 (H2O). Available as acid or monosodium salt. [Pg.184]

Its chief importance is as a source of cinnamic acid by condensation with sodium ethan-oate and ethanoic anhydride and as a source of triphenylmethane dyestuffs by condensation with pyrogallol, dimethylaniline, etc. It is also used in the manufacture of perfumes. [Pg.54]

The apparatus required is similar to that described for Diphenylmelhane (Section IV,4). Place a mixture of 200 g. (230 ml.) of dry benzene and 40 g. (26 ml.) of dry chloroform (1) in the flask, and add 35 g. of anhydrous aluminium chloride in portions of about 6 g. at intervals of 5 minutes with constant shaking. The reaction sets in upon the addition of the aluminium chloride and the liquid boils with the evolution of hydrogen chloride. Complete the reaction by refluxing for 30 minutes on a water bath. When cold, pour the contents of the flask very cautiously on to 250 g. of crushed ice and 10 ml. of concentrated hydrochloric acid. Separate the upper benzene layer, dry it with anhydrous calcium chloride or magnesium sulphate, and remove the benzene in a 100 ml. Claisen flask (see Fig. II, 13, 4) at atmospheric pressure. Distil the remaining oil under reduced pressure use the apparatus shown in Fig. 11,19, 1, and collect the fraction b.p. 190-215°/10 mm. separately. This is crude triphenylmethane and solidifies on cooling. Recrystallise it from about four times its weight of ethyl alcohol (2) the triphenylmethane separates in needles and melts at 92°. The yield is 30 g. [Pg.515]

Naphthalenesulfonic acids are important chemical precursors for dye intermediates, wetting agents and dispersants, naphthols, and air-entrainment agents for concrete. The production of many intermediates used for making a2o, a2oic, and triphenylmethane dyes (qv) involves naphthalene sulfonation and one or more unit operations, eg, caustic fusion, nitration, reduction, or amination. [Pg.489]

Hydroxy-2-Naphthalenecarboxylic Acid. l-Hydroxy-2-naphthoic acid is made similarly to the isomer (2-hydroxy-1-naphthoic acid) by reaction of dry sodium 1-naphthalenolate with CO2 in an autoclave at ca 125°C. It has been used in making triphenylmethane dyes and metalli able a2o dyes. Alkylamides and arylamides of l-hydroxy-2-naphthalenecarboxyhc acid are cyan couplers, ie, components used in indoaniline dye formation in color films (see Color PHOTOGRAPHY). [Pg.505]

The triaryknethane dyes are broadly classified into the triphenyknethanes (Cl 42000—43875), diphenylnaphthyknethanes (Cl 44000—44100), and miscellaneous triphenylmethane derivatives (Cl 44500—44535). The triphenyknethanes are classified further on the basis of substitution in the aromatic nuclei, as follows (/) diamino derivatives of triphenylmethane, ie, dyes of the malachite green series (Cl 42000—42175) (2) triamino derivatives of triphenylmethane, ie, dyes of the fuchsine, rosaniline, or magenta series (Cl 42500—42800) (J) aminohydroxy derivatives of triphenylmethane (Cl 43500—43570) and (4) hydroxy derivatives of triphenylmethane, ie, dyes of the rosoHc acid series (Cl 43800—43875). Monoaminotriphenyknethanes are known but they are not included in the classification because they have Httie value as dyes. [Pg.267]

Diphenylmethane has been prepared with aluminum chloride as a catalyst from methylene chloride and benzene, from chloroform and benzene as a by-product in the preparation of triphenylmethane, and from benzyl chloride and benzene. It has been prepared by the reduction of benzophenone with hydriodic acid and phosphorus, or with sodium and alcohol. It has also been made by heating a solution of benzyl chloride in benzene with zinc dust, or with zinc chloride. The above method is only a slight modification of the original method of Hirst and Cohen. ... [Pg.35]

Triphenylmethane [519-73-3] M 244.3, m 92-93 . Crystd from EtOH or benzene (with one molecule of benzene of crystallisation which is lost on exposure to air or by heating on a water bath). It can also be sublimed under vacuum. It can also be given a preliminary purification by refluxing with tin and glacial acetic acid, then filtered hot through a glass sinter disc, and ppted by addition of cold water. [Pg.381]

Diphenylmethane is significantly more acidic than benzene, and triphenylmethane is more acidic than either. Identify the most acidic proton in each compound, and suggest a reason for the trend in acidity. [Pg.621]

When the aldehyde is heated on the water-bath with 25 per cent, hydrochloric acid, it yields a triphenylmethane derivative, nonamethoxy-triphenylmethane, a body consisting of snow-white crystals, melting at 184 5°. The action of concentrated nitric acid upon the solution in glacial acetic acid of this triphenylmethane derivative gives rise to 1, 2, 5-trimethoxy-4-nitrobenzene (melting at 130°). With bromine, nonamethoxytriphenylmethane combines, with separation of a molecule of trimethoxy bromobenzene, into a tribromo additive compound of hexamethoxy diphenylmethane, a deep violet-blue body. The 1, 2, 5-tri-methoxy-4-bromobenzene (melting at 54 5°) may be obtained more readily from asaronic acid. [Pg.207]

Primary alcohols can be selectively detected using reagent sequences involving an initial oxidation to yield aldehydes that are then reacted in acid medium with electron-rich aromatics or heteroaromatics, according to the above scheme, to yield intensely colored triphenylmethane dyes. [Pg.39]

Presumably the active chlorine of the chloramines formed by reaction with chlorine gas or hypochlorite reacts with TDM in the presence of acetic acid to yield dark blue, mesomerically stabilized quinoid reaction products that possibly rearrange to yield triphenylmethane dyestuffs. [Pg.108]

Classical examples of this type of reaction are the various dimethylaminobenz-aldehyde reagents (q.v.) and vanillin-acid reagents, of which one, the vanillin-phosphoric acid reagent, is already included in Volume 1 a. The aldol condensation of estrogens is an example for the reaction mechanism (cf. Chapter 2, Table 6). According to Maiowan indole derivatives react in a similar manner [1]. Longo has postulated that catechins yield intensely colored triphenylmethane dyes [2]. [Pg.228]

In the presence of strong acids catechins react with aromatic aldehydes to yield triphenylmethane dyes [14] according to Malowan [15] indole derivatives form the following condensation product ... [Pg.229]

The general aspects of the aldehyde-acid reaction were discussed in Chapter 2. Thus it is readily understood that catechins, for example, can react with aromatic aldehydes in the presence of strong acids to yield colored triphenylmethane dyes [26]. [Pg.231]

Anodic oxidation has been employed for water-soluble triphenyl-methane dyes. It has been shown that the formation of dye is an irreversible two-electron oxidation process.21-23 This method has been used for the oxidation of diamino triphenylmethane leuco compounds containing two to four sulfonic acid groups to obtain food-grade colored materials.24... [Pg.130]

Triethyl orthoformate or chloroform can react with arene nucleophiles to give triphenylmethanes with three identical aryl groups.5,52,67 In addition, dialkylarylamines, when treated with dialkoxycarbenium tetrafluoro-borates under thermodynamic conditions or with triethyl orthoformate/zinc chloride in ether under anhydrous conditions, give triarylmethanes.68 For example, 4-methoxycarbazole and triethyl orthoformate in the presence of acid catalyst give 44 in 66% yield69 (Scheme 7). In general, phenolic or... [Pg.138]

Pressure-sensitive recording materials are obtained by dissolving a triphenylmethane leuco dye in a solvent composed of paraffin oils. The microcapsules are formed from a water-soluble106 or water-dispersible material.107,108 Leuco dyes dissolved in sunflower oil are microencapsulated in a solution containing a melamine-HCHO precondensate and coated on the back side of a paper sheet. Contact of the microcapsule-coated sheet with an acid-coated receptor sheet allows the color formation to occur. [Pg.152]

Triphenylmethane leuco dyes are used for photographic materials. The photographic system requires a polymer binder such as acrylic acid-methyl methacrylate copolymer115 or a copolymer of isophthalic and terephthalic acids116 a sensitizer such as 4-(4-n-amyloxyphenyl)-2,6-bis(3-ethylphenyl)-thiapyrilium perchlorate,117 a photo initiator such as hexaarylbisimi-dazole,118 and phenyl tribromomethyl sulfone, cycloalkane such as 1,2,3, 4,5-pentabromo-6-chlorocyclohexane,119 or 3-benzylidene-9-methyl-2,3-dihydro- 1 TZ-cyclopenta [b] quinoline.120... [Pg.153]

DC11 Malachite Green, Basic Blue efficiency (95-98%) achieved within 6 h for 100 mM Acid Blue 25 (anthraquinone dye), 4 h for 55 mM Malachite Green (triphenylmethane dye), and 2 h for 750 mM Basic Blue X-GRRL under anaerobic conditions ... [Pg.6]

The decolorization potential of immobilized P. chrysosporium MTCC 787 for azo dyes Acid Orange, Acid Red 114, triphenylmethane dye Methyl Violet, diazoic dye Congo Red, vat dye Vat Magenta, thiazine dye Methylene Blue, and anthraqui-none Acid Green was demonstrated by Radha et al. [53]. Decolorization experiments were carried out with immobilized calcium alginate (Ca-ALG) beads of different sizes (2-6 mm). [Pg.175]

The stable carbanions may belong in a special category since their stability is in most cases due to resonance, and the resonance has geometrical requirements that might or might not be the same as those of the bond hybridization of an ordinary carbanion. The central hydrogen of triptycene has none of the acidity of the central hydrogen of triphenylmethane.364... [Pg.196]


See other pages where Triphenylmethane, acidity is mentioned: [Pg.19]    [Pg.262]    [Pg.455]    [Pg.495]    [Pg.271]    [Pg.282]    [Pg.109]    [Pg.319]    [Pg.349]    [Pg.282]    [Pg.792]    [Pg.128]    [Pg.139]    [Pg.151]    [Pg.153]    [Pg.88]   
See also in sourсe #XX -- [ Pg.271 ]

See also in sourсe #XX -- [ Pg.271 ]




SEARCH



Acid dyes triphenylmethane

Acid strength triphenylmethane

Triphenylmethane

Triphenylmethanes

© 2024 chempedia.info