Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Treatment acidification

Hexanedione is usually measured as total 2,5-hexanedione, a free form accounting for about 10% of the total and 4,5-dihydroxy-2-hexanone, which is converted to 2,5-hexanedione upon acid treatment (acidification of urine samples is routinely performed in order to hydrolyze conjugates that can interfere with analysis). 2,5-Hexanedione has also been detected after acid treatment of urine from individuals not occupationally exposed to w-hcxane (Fedtke and Bolt 1986a Perbellini et al. 1993). A reference value for 2,5-hexanedione in acid-treated urine in a non-occupationally exposed Italian population (n=123,... [Pg.151]

Having the glucoside, we could now determine its concentration in the leaves. Extract samples of varying sizes were subjected to calcium hydroxide treatment, acidification, extraction, and glc quantitation. The amounts of parasorbic acid obtained from the samples are shown in Figure 1 to be proportional to sample size. [Pg.331]

Phenylhydrazine may be prepared by reducing phenyldiazonium chloride solution with excess of warm sodium sulphite solution, followed by acidification with hydrochloric acid, when the hydrochloride crystallises out on cooling. Treatment of the latter with excess of sodium hydroxide solution liberates the free base. The reaction is believed to proceed through the following stages —... [Pg.635]

Separations based upon differences in the chemical properties of the components. Thus a mixture of toluene and anihne may be separated by extraction with dilute hydrochloric acid the aniline passes into the aqueous layer in the form of the salt, anihne hydrochloride, and may be recovered by neutralisation. Similarly, a mixture of phenol and toluene may be separated by treatment with dilute sodium hydroxide. The above examples are, of comse, simple apphcations of the fact that the various components fah into different solubihty groups (compare Section XI,5). Another example is the separation of a mixture of di-n-butyl ether and chlorobenzene concentrated sulphuric acid dissolves only the w-butyl other and it may be recovered from solution by dilution with water. With some classes of compounds, e.g., unsaturated compounds, concentrated sulphuric acid leads to polymerisation, sulphona-tion, etc., so that the original component cannot be recovered unchanged this solvent, therefore, possesses hmited apphcation. Phenols may be separated from acids (for example, o-cresol from benzoic acid) by a dilute solution of sodium bicarbonate the weakly acidic phenols (and also enols) are not converted into salts by this reagent and may be removed by ether extraction or by other means the acids pass into solution as the sodium salts and may be recovered after acidification. Aldehydes, e.g., benzaldehyde, may be separated from liquid hydrocarbons and other neutral, water-insoluble hquid compounds by shaking with a solution of sodium bisulphite the aldehyde forms a sohd bisulphite compound, which may be filtered off and decomposed with dilute acid or with sodium bicarbonate solution in order to recover the aldehyde. [Pg.1091]

Brine Treatment. The principal use of aqueous HCl is for the acidification of brine prior to feeding it to the electrolytic cells for producing chlorine and caustic soda. Almost all of this HCl comes from captive sources. An estimated 213 thousand metric tons of HCl (100% basis) was used for brine treatment in 1993 (74). [Pg.451]

Although 4-hydroxybenzaldehyde can be made by the saligenin route, it has been made historically by the Reimer-Tiemann process, which also produces sahcylaldehyde (64). Treatment of phenol with chloroform and aqueous sodium hydroxide results in the formation of benzal chlorides, which are rapidly hydrolyzed by the alkaline medium into aldehydes. Acidification of the phenoxides results in the formation of the final products, sahcylaldehyde and 4-hydroxybenzaldehyde. The ratio of ortho and para isomers is flexible and can be controlled within certain limits. The overall reaction scheme is shown in Figure 1. Product separation is accomphshed by distillation, but this process leads to environmental problems because of the quantities of sodium chloride produced. [Pg.506]

Nitro alcohols form salts upon mild treatment with alkahes. Acidification causes separation of the nitro group as N2O from the parent compound, and results in the formation of carbonyl alcohols, ie, hydroxy aldehydes, from primary nitro alcohols and ketols from secondary nitro alcohols. [Pg.61]

The common treatment methods are acidification, neutralization, and incineration. When oxahc acid is heated slightly in sulfuric acid, it is converted to carbon monoxide, carbon dioxide, and water. Reaction with acid potassium permanganate converts it to carbon dioxide. Neutralization with alkahes, such as caustic soda, yields soluble oxalates. Neutralization with lime gives practically insoluble calcium oxalate, which can be safely disposed of, for instance, by incineration. [Pg.461]

Japan was the lea ding producer of iodine in the 1980s, producing nearly 7000 metric tons per year. Elemental iodine was released into brine by treatment with sodium nitrate or chlorine. The free iodine was then adsorbed on activated carbon. It was stripped from the carbon with sodium hydroxide followed by acidification to form a slurry of elemental iodine ... [Pg.411]

One such compound, bropirimine (112), is described as an agent which has both antineo-plastic and antiviral activity. The first step in the preparation involves formation of the dianion 108 from the half ester of malonic acid by treatment with butyllithium. Acylation of the anion with benzoyl chloride proceeds at the more nucleophilic carbon anion to give 109. This tricarbonyl compound decarboxylates on acidification to give the beta ketoester 110. Condensation with guanidine leads to the pyrimidone 111. Bromination with N-bromosuccinimide gives bropirimine (112) [24]. [Pg.117]

The light yellow solid which separated was collected by filtration the filtrate was reserved for treatment as described below. Suspension in water of the solid, which weighed 12 grams, and acidification of the mixture with dilute hydrochloric acid produced a gum which soon crystallized. Recrystallizatiori of this solid from ethanol gave 10.2 grams (30%) of 2-di-phenylacetyl-1,3-indandione as a light yellow crystalline solid, which melted at 146 -147°C. [Pg.515]

Bromo-6,6-diinethylcyclohexanone gives 2,2-dimethylcyclopentane-carboxylic acid on treatment with aqueous NaOH followed by acidification, a process called the Favorskii reaction. Propose a mechanism. [Pg.782]

Intermediate D-a-6 must now be converted into a form amenable to the crucial lactamization reaction. To this end, treatment of D-a-6 with hydrazine accomplishes the removal of the phthalimide protecting group and provides D-a-18 (Scheme 5) after acidification with dilute aqueous HC1. It is noteworthy that the acid-labile tert-butyl ester function withstands the latter step. Introduction of the... [Pg.47]

The synthesis of key intermediate 12, in optically active form, commences with the resolution of racemic trans-2,3-epoxybutyric acid (27), a substance readily obtained by epoxidation of crotonic acid (26) (see Scheme 5). Treatment of racemic 27 with enantio-merically pure (S)-(-)-1 -a-napthylethylamine affords a 1 1 mixture of diastereomeric ammonium salts which can be resolved by recrystallization from absolute ethanol. Acidification of the resolved diastereomeric ammonium salts with methanesulfonic acid and extraction furnishes both epoxy acid enantiomers in eantiomerically pure form. Because the optical rotation and absolute configuration of one of the antipodes was known, the identity of enantiomerically pure epoxy acid, (+)-27, with the absolute configuration required for a synthesis of erythronolide B, could be confirmed. Sequential treatment of (+)-27 with ethyl chloroformate, excess sodium boro-hydride, and 2-methoxypropene with a trace of phosphorous oxychloride affords protected intermediate 28 in an overall yield of 76%. The action of ethyl chloroformate on carboxylic acid (+)-27 affords a mixed carbonic anhydride which is subsequently reduced by sodium borohydride to a primary alcohol. Protection of the primary hydroxyl group in the form of a mixed ketal is achieved easily with 2-methoxypropene and a catalytic amount of phosphorous oxychloride. [Pg.176]

When a photoprotein solution (1.3 ml) was shaken with ethanol (0.7 ml) containing one drop of concentrated HC1 and then the mixture was extracted twice with 2 ml each of ethyl acetate, about 75% of the chromophore was extracted into the ethyl acetate extract. The chromophore isolated showed an absorption peak at 398 nm in neutral methanol (Fig. 10.2.5). The isolated chromophore was practically non-fluorescent, like the native photoprotein. However, the acidification of a methanolic solution with HC1 resulted in a sharpening and two-fold increase of the 398 nm absorption peak, accompanied by the appearance of fluorescence. In aqueous 0.1 M HC1, two fluorescence emission peaks (595 nm and 650 nm) were found, together with a corresponding excitation peak (400 nm). Treatment of the 398 nm absorbing chromophore with 0.1 M NaOH resulted in a rapid loss of the 398 nm absorption peak. Dithionite did not affect the 398 peak, suggesting that the chromophore does not contain Fe3+. [Pg.313]

The hydrolysis of Pu+lt can result in the formation of polymers which are rather intractable to reversal to simpler species. Generally such polymerization requires [Pu] > 10-8 M but, due to the irreversibility, dilution of more concentrated hydrolysis solutions below this value would not destroy the polymers. The rate of polymerization has been found to be third order in Pu concentrations and has a value of 5.4 X 10-5 moles/hr at 50°C and [Pu+I ]T t 0.006 M, [HNO3] s o.25 M (13). Soon after formation, such polymers can be decomposed readily to simple species in solution by acidification or by oxidation to Pu(Vl). However, as the polymers age, the decomposition process requires increasingly rigorous treatment. The rate of such irreversible aging varies with temperature, Pu(IV) concentration, the nature of... [Pg.220]

Cellulose may be solubilised by treatment with sodium hydroxide and carbon disulfide. It can be regenerated by acidification of the solution. This is the basis of the production of regenerated cellulose fibre, so-called viscose rayon , which is a major textile fibre. The technique is also used for the production of continuous cellulose-derived film, so-called cellophane (from cellulose and diaphane , the latter being French for transparent). [Pg.19]

From animal tissue, especially bovine lung and liver (e. g. autolysis of comminuted tissue parts, heating with ammonium sulfate in alkaline solution, filtration and acidification yield heparin as complex with protein, removal of fat with alcohol and treatment with trypsine for the purpose of decomposition of proteins, precipitation with alcohol and various purification methods). [Pg.1001]

An alternative sequence utilized 2-oxazolidone, which was readily synthesized from urea and ethanolamine, as the glycine equivalent. Subsequent treatment with phosphorous acid and formaldehyde produced iV-phosphonomethyl-2-oxazolidone 12 (16). Upon hydrolysis, and loss of CO2,12 provided the related derivative, iV-phosphonomethylethanolamine 13, which was oxidized at high temperature with a variety of metal catalysts including cadmium oxide (16) or Raney copper (17) to give GLYH3, after acidification. A similar oxidation route has also been reported starting from iV-phosphonomethy 1-morpholine (18). [Pg.20]

Acidification of chloramine T with sulfuric acid produces the formation of dichloramine T (DCT) and hypochlorous acid (HCIO), species which react with C=C bonds of the butadiene units. The effectiveness of the treatment is ascribed to the introduction of chlorine and oxygen moieties on the mbber surface. A decrease in the pH of the chloramine T aqueous solutions produced more extended surface modifications and improved adhesion properties in the joints produced with waterborne polyurethane adhesive (Figure 27.9). The adhesive strength obtained is slightly lower than that obtained for the rubber treated with 3 wt% TCI/MEK, and its increases as the pH of the chloramine T solution decreases (Figure 27.9). A cohesive failure in the rubber is generally obtained. [Pg.769]


See other pages where Treatment acidification is mentioned: [Pg.2]    [Pg.211]    [Pg.2]    [Pg.211]    [Pg.232]    [Pg.890]    [Pg.908]    [Pg.908]    [Pg.368]    [Pg.511]    [Pg.29]    [Pg.452]    [Pg.176]    [Pg.1144]    [Pg.890]    [Pg.908]    [Pg.908]    [Pg.530]    [Pg.129]    [Pg.87]    [Pg.110]    [Pg.142]    [Pg.172]    [Pg.373]    [Pg.274]    [Pg.295]    [Pg.57]    [Pg.24]    [Pg.25]    [Pg.234]    [Pg.438]    [Pg.205]   
See also in sourсe #XX -- [ Pg.626 ]




SEARCH



ACIDIFICATION

© 2024 chempedia.info