Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transmission preparation

A first example of application of microtomography is taken from life sciences. Here X-ray microscopy and microtomography allows to reconstruct the internal three-dimensional microstructure without any preparation and sometimes even of living objects. Fig. la shows an X-ray transmission microscopical image of bone (femoral head). Several reconstructed cross-sections are shown in Fig.lb. Fig.lc shows the three-dimensional reconstruction of this bone. [Pg.581]

An interferometric method was first used by Porter and Topp [1, 92] to perfonn a time-resolved absorption experiment with a -switched ruby laser in the 1960s. The nonlinear crystal in the autocorrelation apparatus shown in figure B2.T2 is replaced by an absorbing sample, and then tlie transmission of the variably delayed pulse of light is measured as a fiinction of the delay This approach is known today as a pump-probe experiment the first pulse to arrive at the sample transfers (pumps) molecules to an excited energy level and the delayed pulse probes the population (and, possibly, the coherence) so prepared as a fiinction of time. [Pg.1979]

Figure C2.17.2. Transmission electron micrograph of a gold nanoneedle. Inverse micelle environments allow for a great deal of control not only over particle size, but also particle shape. In this example, gold nanocrystals were prepared using a photolytic method in surfactant-rich solutions the surfactant interacts strongly with areas of low curvature, thus continued growth can occur only at the sharjD tips of nanocrystals, leading to the fonnation of high-aspect-ratio nanostmctures [52]. Figure C2.17.2. Transmission electron micrograph of a gold nanoneedle. Inverse micelle environments allow for a great deal of control not only over particle size, but also particle shape. In this example, gold nanocrystals were prepared using a photolytic method in surfactant-rich solutions the surfactant interacts strongly with areas of low curvature, thus continued growth can occur only at the sharjD tips of nanocrystals, leading to the fonnation of high-aspect-ratio nanostmctures [52].
Transparent solid samples can be analyzed directly by placing them in the IR beam. Most solid samples, however, are opaque and must be dispersed in a more transparent medium before recording a traditional transmission spectrum. If a suitable solvent is available, then the solid can be analyzed by preparing a solution and analyzing as described earlier. When a suitable solvent is not available, solid samples may be analyzed by preparing a mull of the finely powdered sample with a suitable oil. Alternatively, the powdered sample can be mixed with KBr and pressed into an optically transparent pellet. [Pg.394]

AH intrinsic germanium metal sold is specified to be N-type with a resistivity of at least 40 H-cm at 25°C or 50 H-cm at 20°C. Germanium metal prepared for use in infrared optics is usuaHy specified to be N-type with a resistivity of 4-40 Hem, to be stress-free and fine annealed, and to have certain minimum transmission (or maximum absorption) characteristics in the 3—5 or 8—12 pm wavelength ranges. Either polycrystaHine or single-crystal material is specified. [Pg.280]

Laminated glass is used for solar control, particularly where a highly reflective surface is not desired and where the laminate contributes other benefits. In these applications, a uniformly pigmented interlayer is obtained from the manufacturer and the laminate can be prepared by the conventional process. Broad ranges of colors and transmission levels are available with shading coefficients as low as 0.41. Pigmented interlayer is considered to be more... [Pg.528]

Transmission electron microscopy is very widely used by biologists as well as materials scientists. The advantage of being able to resolve 0.2 nm outweighs the disadvantages of TEM. The disadvantages include the inabiUty of the common 100-kV electron beam to penetrate more than a few tenths of a micrometer (a 1000-kV beam, rarely used, penetrates specimens about 10 times thicker). Specimen preparation for the TEM is difficult because of the... [Pg.331]

Films or membranes of silkworm silk have been produced by air-drying aqueous solutions prepared from the concentrated salts, followed by dialysis (11,28). The films, which are water soluble, generally contain silk in the silk I conformation with a significant content of random coil. Many different treatments have been used to modify these films to decrease their water solubiUty by converting silk I to silk II in a process found usehil for enzyme entrapment (28). Silk membranes have also been cast from fibroin solutions and characterized for permeation properties. Oxygen and water vapor transmission rates were dependent on the exposure conditions to methanol to faciUtate the conversion to silk II (29). Thin monolayer films have been formed from solubilized silkworm silk using Langmuir techniques to faciUtate stmctural characterization of the protein (30). ResolubiLized silkworm cocoon silk has been spun into fibers (31), as have recombinant silkworm silks (32). [Pg.78]

Specimen Preparation for Transmission Electron Microscopy I. (J. C. Brav-man, R. M. Anderson, and M. L. McDonald, eds.) Volume 115 in MRS symposium proceedings series, 1988. [Pg.115]

For many applications, quantitative band shape analysis is difficult to apply. Bands may be numerous or may overlap, the optical transmission properties of the film or host matrix may distort features, and features may be indistinct. If one can prepare samples of known properties and collect the FTIR spectra, then it is possible to produce a calibration matrix that can be used to assist in predicting these properties in unknown samples. Statistical, chemometric techniques, such as PLS (partial least-squares) and PCR (principle components of regression), may be applied to this matrix. Chemometric methods permit much larger segments of the spectra to be comprehended in developing an analysis model than is usually the case for simple band shape analyses. [Pg.422]

S. Amelincks, D. van Dyck, J. van Landuyt, G. van Tendeloo (eds.) Electron Microscopy Principles and Fundamentals,VCH Verlagsgesellschaft mbH, Weinheim 1997. 2-178 R. M. Anderson, S. D. Walck (eds.) Specimen Preparation for Transmission Electron Microscopy of Materials IV, Materials Research Society, Pittsbrrrgh 1997. [Pg.308]

Regarding a historical perspective on carbon nanotubes, very small diameter (less than 10 nm) carbon filaments were observed in the 1970 s through synthesis of vapor grown carbon fibers prepared by the decomposition of benzene at 1100°C in the presence of Fe catalyst particles of 10 nm diameter [11, 12]. However, no detailed systematic studies of such very thin filaments were reported in these early years, and it was not until lijima s observation of carbon nanotubes by high resolution transmission electron microscopy (HRTEM) that the carbon nanotube field was seriously launched. A direct stimulus to the systematic study of carbon filaments of very small diameters came from the discovery of fullerenes by Kroto, Smalley, and coworkers [1], The realization that the terminations of the carbon nanotubes were fullerene-like caps or hemispheres explained why the smallest diameter carbon nanotube observed would be the same as the diameter of the Ceo molecule, though theoretical predictions suggest that nanotubes arc more stable than fullerenes of the same radius [13]. The lijima observation heralded the entry of many scientists into the field of carbon nanotubes, stimulated especially by the un-... [Pg.36]

As mentioned above, employment of MWCNT for field emitter will be one of the most important applications of MWCNT. For this purpose, MWCNT is prepared by the chemical purification process [30,38], in which graphite debris and nanoparticles are removed by oxidation with the aid of CuCl2 intercalation [38]. Purified MWCNT is obtained in the form of black and thin "mat" (a flake with thickness of ca. a few hundreds of [im). Figure 7 shows a typical transmission electron microscope (TEM) picture of MWCNT with an open end, which reveals that a cap is etched off and the central cavity is exposed. [Pg.8]

Alloys were prepared by arc melting high purity starting materials followed by homogenisation. Transmission electron microscopy specimens were prepared by... [Pg.175]

When plotting the standard curve it is customary to assign a transmission of 100 per cent to the blank solution (reagent solution plus water) this represents zero concentration of the constituent. It may be mentioned that some coloured solutions have an appreciable temperature coefficient of transmission, and the temperature of the determination should not differ appreciably from that at which the calibration curve was prepared. [Pg.674]

Procedure. Dissolve a suitable weight of the sample of lead in 6M nitric acid add a little 50 per cent aqueous tartaric acid to clear the solution if antimony or tin is present. Cool, transfer to a separatory funnel, and dilute to about 25 mL. Add concentrated ammonia solution to the point where the slight precipitate will no longer dissolve on shaking, then adjust the pH to 1, using nitric acid or ammonia solution. Add 1 mL freshly prepared 1 per cent cupferron solution, mix, and extract with 5 mL chloroform. Separate the chloroform layer, and repeat the extraction twice with 1 mL portions of cupferron solution + 5 mL of chloroform. Wash the combined chloroform extracts with 5mL of water. Extract the bismuth from the chloroform by shaking with two 10 mL portions of 1M sulphuric acid. Run the sulphuric acid solution into a 25 mL graduated flask. Add 3 drops saturated sulphur dioxide solution and 4 mL of 20 per cent aqueous potassium iodide. Dilute to volume and measure the transmission at 460 nm. [Pg.685]

Procedure. Prepare a 0.25 per cent solution of diphenylcarbazide in 50 per cent acetone as required. The test solution may contain from 0.2 to 0.5 part per million of chromate. To about 15 mL of this solution add sufficient 3M sulphuric acid to make the concentration about 0.1M when subsequently diluted to 25 mL, add 1 mL of the diphenylcarbazide reagent and make up to 25 mL with water. Match the colour produced against standards prepared from 0.0002M potassium dichromate solution. A green filter having the transmission maximum at about 540 nm may be used. [Pg.687]

The three normal means of presenting the spectrophotometric data are described below by far the most common procedure is to plot absorbance against wavelength (measured in nanometres). The wavelength corresponding to the absorbance maximum (or minimum transmission) is read from the plot and is used for the preparation of the calibration curve. This point is chosen... [Pg.708]


See other pages where Transmission preparation is mentioned: [Pg.579]    [Pg.394]    [Pg.208]    [Pg.286]    [Pg.286]    [Pg.161]    [Pg.182]    [Pg.198]    [Pg.198]    [Pg.356]    [Pg.370]    [Pg.476]    [Pg.248]    [Pg.260]    [Pg.315]    [Pg.323]    [Pg.335]    [Pg.469]    [Pg.299]    [Pg.423]    [Pg.218]    [Pg.49]    [Pg.105]    [Pg.687]    [Pg.148]    [Pg.361]    [Pg.170]    [Pg.170]    [Pg.437]    [Pg.133]   
See also in sourсe #XX -- [ Pg.81 ]




SEARCH



HRTEM (high-resolution transmission sample preparation

Particles, transmission electron samples, preparation

Scanning transmission electron microscopy sample preparation

Specimen preparation method transmission electron

Specimen preparation method transmission electron microscop

Transmission electron microscopy fixative preparation

Transmission electron microscopy sample preparation

Transmission electron microscopy solution preparation

Transmission electron microscopy specimen preparation

Transmission electron microscopy specimen preparation method

Transmission electron microscopy thin section preparation

Transmission infrared spectroscopy, sample preparation

Transmission sample preparation

© 2024 chempedia.info