Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toluene crude

The trisulphide is made commercially by adding sulphur to molten white P. Purification can be effected by sublimation in vacuo or by recrystallising from toluene. Crude material can be purified with boiling water, when the other snlphides are hydrolysed. The heptasulphide can be purified by repeated CS2 extraction [19,21]. [Pg.126]

Junin Asphaltenes (AJ) and Junin Maltenes (MJ) The crude cal studied was Junin, which is found at the Orinoco oil belt and has an API gravity of 8 . Asphaltenes were precipitated from the crude oil by the addition of 60 volumes of n-heptane. Previously, the crude oil was diluted in 1 1 toluene - crude oil. Said mixture was stirred mechanically for 6 hours and was then left standing for 24 hours. After this time, the solid was filtered, the solvent of the supernatant liquid was evaporated, leaving a resin - the maltenes - which was dried later and quantified. The solid was washed in a Soxhlet extractor with n-heptane until the solvent turned clear. [Pg.60]

The water and sediment contents of crude oils is measured according to the standard methods NF M 07-020, ASTM D 96 and D 1796, which determine the volume of water and sediments separated from the crude by centrifuging in the presence of a solvent (toluene) and of a demulsifylng agent Table 8.13 gives the bottom sediment and water content of a few crude oils. [Pg.327]

Initial portion of the TBP curve of a Saharan crude oil (Note the discontinuities due to the presence of aromatics benzene B, toluene T, xylenes X). [Pg.333]

Alternative experiments (a) RecrystaUisation of crude benzoic acid (5-0 g.) from methyl alcohol (30 ml.) the wash liquid should be 50 per cent, methyl alcohol. (6) RecrystaUisation of acetaniUde (5 g.) from toluene (100 ml.) filter through a preheated funnel. [Pg.233]

Bromo-4-aminotoluene, Suspend the hydrochloride in 400 ml, of water in a 1-Utre beaker equipped with a mechanical stirrer. Add a solution of 70 g. of sodium hydroxide in 350 ml. of water. The free base separates as a dark heavy oil. After cooUng to 15-20°, transfer the mixture to a separatory funnel and run off the crude 3-bromo-4-amino-toluene. This weighs 125 g. and can be used directly in the next step (3). [Pg.605]

Unless the material is at least partly dried before hydrolysis, the yield of hydrochloride is reduced because of its solubility. If pure 3-broino-4-acetamino-toluene is required, the crude material may be recrystallised from 50 per cent, alcohol with the addition of a little decolourising carbon it separates as colourless needles, m.p. 116-117 (180 g.). [Pg.606]

The sodium salt of methyl red may be prepared by dissolving the crude product in an equal weight of 35 per cent, sodium hydroxide which has been diluted to 350 ml., hitoring, and evaporating under diminished pressure (Fig. II, 37, I). The resulting sodium salt forms orange leaflets. This water-soluble product is very convenient for use as an indicator. Incidentally, the toluene extraction is avoided. [Pg.626]

Heat a suspension of 22 g. of the diacetate in a mixture of 120 ml. of concentrated hydrochloric acid, 190 ml. of water and 35 ml. of alcohol under reflux for 45 minutes. Cool the mixture to 0°, filter the solid with suction, and wash with water. Purify the crude aldehyde by rapid steam distillation (Fig. II, 41, 3) collect about 1500 ml. of distillate during 15 minutes, cool, filter, and dry in a vacuum desiccator over calcium chloride. The yield of pure o-nitrobenzaldehyde, m.p. 44—45°, is 10 g. The crude solid may also be purified after drying either by distillation under reduced pressure (the distillate of rather wide b.p., e.g., 120-144°/3-6 mm., is quite pure) or by dissolution in toluene (2-2-5 ml. per gram) and precipitation with light petroleum, b.p. 40°-60° (7 ml. per ml. of solution). [Pg.696]

In a 500 ml. bolt-head flask provided with a thermometer (reaching almost to the bottom) and a calcium chloride (or cotton wool) guard tube, place 100 g. of a-bromo-wo-valerj l bromide and 50 g. of dry, finely-divided urea. Start the reaction by warming the flask on a water bath the temperature soon rises to about 80°. Maintain this temperature for about 3 horns the mass will liquefy and then resolidify. Transfer the sticky reaction product to a large beaker containing saturated sodium bicarbonate solution, stir mechanically and add more saturated sodium bicarbonate solution in small quantities until effervescence ceases. Filter at the pump, suck as dry as possible and dry the crude bromural upon filter paper in the air. RecrystaUise the dry product from toluene. Alternatively, recrystaUise the moist product from hot water (ca. 700 ml.). The yield of pure brommal, m.p. 154-155°, is 28 g. [Pg.999]

Osmium s voice In the original patent a continuous, 27 hours extraction with hot toluene was used. This is very impractical. I recommend the following after extraction and removal of the ex traction solvent, dissolve the crude product in 400 - 450 ml hot toluene, put that solution in a beaker and cool it for at least 2 hours in an ice bath. Filter the precipitated product, wash with about 100 ml ice-cold toluene ahd dry at 70°C or in a desiccator to constant weight. Mp. 132.5-134.0°C.]... [Pg.174]

Phenylmagnesium bromide (2.8 mol) was prepared in anhydrous ether (21) from bromobenzene (440 g, 2.9 mol) and magnesium turnings (68.0 g 2.8 g-atom). To this solution was added dropwise a solution of indole (328 g, 2.8 mol) in benzene (8(X)ml). The resulting solution was stirred for 10 min and then a solution of cyclopentanoyl chloride (322 g, 2.4 mol) in benzene (800 ml) was added dropwise. The solution was stirred for 1 h and then water (11) was added carefully. The precipitate which formed was collected by filtration and dried to give 169 g of crude product. Additional product (97 g) was obtained by evaporation of the organic layer of the filtrate. The combined products were recrystallized from toluene to give 250 g (49% yield) of pure product. [Pg.115]

After the addition of 2 1. of water, the mixture is steam-distilled as long as any oil comes over. The crude, heavy, yellow oil is separated and washed with two 200-cc. portions of 10 per cent sodium hydroxide, once with 100 cc. of water, twice with 150-cc. portions of concentrated sulfuric acid, and finally with 100 cc. of 5 per cent, sodium carbonate solution. It is dried with about 5 g. of calcium chloride, filtered through glass wool, and distilled using a long air condenser. Most of the product boils at i8o-i83°/75o mm. The yield of pure colorless material, b.p. i83°/76o mm., is 125-135 g. (36-39 per cent of the theoretical amount, based on the amount of -toluidine originally used, or 54-59 per cent based on the amount of 3-bromo-4-amino-toluene). [Pg.17]

The crude enamlne (1) is dissolved in 20 mL of toluene, and the solution is transferred (Note 3) to a 100-mL, three-necked flask equipped with a magnetic stirring bar, 50-mL dropping funnel, reflux condenser protected with a calcium chloride tube, and a thermometer immersed in the solution. A solution of 13.2 g (0.048 mol) of diphenyl phosphorazidate (Note 4 uarntng) in 20 mL of toluene is added with stirring during 30 min di11e the reaction temperature is maintained at about 25°C. The mixture is stirred for 4 hr at 25 C and heated at reflux for 1 hr. The mixture is transferred to a 300-mL, round-bottomed flask and most of the toluene is removed under reduced pressure to yield 23.7 g of a reddish-brown oil, 2 (Note 5). [Pg.192]

These can be converted to their uranyl nitrate addition compounds. The crude or partially purified ester is saturated with uranyl nitrate solution and the adduct filtered off. It is recrystallised from -hexane, toluene or ethanol. For the more soluble members crystallisation from hexane using low temperatures (-40°) has been successful. The adduct is decomposed by shaking with sodium carbonate solution and water, the solvent is steam distilled (if hexane or toluene is used) and the ester is collected by filtration. Alternatively, after decomposition, the organic layer is separated, dried with CaCl or BaO, filtered, and fractionally distilled under high vacuum. [Pg.60]

The crude base is purified by converting 2g of base in toluene (3.3mL) into the acetate salt by heating at 65-70 with 0.46g of AcOH and the crystals are collected and dried (0.96g from two crops m 141-143 ). The acetate salt is dissolved in warm H2O, basified with aqueous NaOH and extracted with C6H6. The dried extract (MgS04) is evaporated in vacuum leaving a viscous oil which crystallises and can be distd. [Gottstein and Cheney J Org Chem 30 2072 1965.] The picrate has m 234-236 (from aq MeOH), and the formate has m 147-148° (from heptane). [Pg.185]

Carbon soot from resistive heating of a carbon rod in a partial helium atmosphere (0.3bar) under specified conditions is extracted with boiling C H or toluene, filtered and the red-brown soln evapd to give crystalline material in 14% yield which is mainly a mixture of fullerenes C q and C70. Chromatographic filtration of the crude mixture with allows no separation of components, but some separation was observed on silica gel... [Pg.247]

If material free from all traces of ethyl adipate is desired, time and material can be saved by omitting the first distillation (observation of the checkers). The toluene solution of the crude 2-carbethoxycyclopentanone is cooled to 0° and added slowly with stirring to 300 cc. of 10 per cent potassium hydroxide solution maintained below r°. Cold water is added until the... [Pg.32]

The dehydrogenation reaction produces crude styrene which consists of approximately 37.0% styrene, 61% ethylbenzene and about 2% of aromatic hydrocarbon such as benzene and toluene with some tarry matter. The purification of the styrene is made rather difficult by the fact that the boiling point of styrene (145.2°C) is only 9°C higher than that of ethylbenzene and because of the strong tendency of styrene to polymerise at elevated temperatures. To achieve a successful distillation it is therefore necessary to provide suitable inhibitors for the styrene, to distil under a partial vacuum and to make use of specially designed distillation columns. [Pg.428]

In one process the crude styrene is first passed through a pot containing elemental sulphur, enough of which dissolves to become a polymerisation inhibitor. The benzene and toluene are then removed by distillation. The elthylbenzene is then separated from the styrene and tar by passing this through two distillation columns, each with top temperatures of about 50°C and bottom temperatures of 90°C under a vacuum of about 35 mmHg. The tar and sulphur are... [Pg.428]

Superheated steam is used to bring the feed to reaction temperature. Reactor effluent is quenched, distilled to remove unreacted feed plus benzene and toluene made during the reaction, and the crude styrene finished by vacuum distillation. Inhibitors are added during the distillation steps to prevent polymerization of the styrene monomer. [Pg.112]

Toluene is a useful co-solvent in metal-ammonia reductions as first reported by Chapman and his colleagues. The author has found that a toluene-tetrahydrofuran-ammonia mixture (1 1 2) is a particularly useful medium for various metal-ammonia reductions. Procedure 8a (section V) describes the reduction of 17-ethyl-19-nortestosterone in such a system. Ethylene dibromide is used to quench excess lithium. Trituration of the total crude reduction product with methanol affords an 85% yield of 4,5a-dihydro-17-ethyl-19-nortestosterone, mp 207-213° (after sintering at 198°), reported mp 212-213°. For the same reduction using Procedure 5 (section V), Bowers et al obtained a 60% yield of crude product, mp, 196-199°, after column chromatography of the total reduction product. A similar reduction of 17-ethynyl-19-nortestosterone is described in Procedure 8b (section V). The steroid concentration in the toluene-tetrahydrofuran-ammonia system is 0.05 M whereas in the ether-dioxane-ammonia system it is 0.029 M. [Pg.44]

A solution of the ketol diacetate (15 g, 0.028 mole) in toluene (200 ml) is dried by concentration to 150 ml at normal pressure. The solution is cooled to room temperature and then added with vigorous stirring to a solution of calcium turnings (4.2 g, 0.11 g-atom) in liquid ammonia (500 ml). The addition is made in 5 min, the mixture is stirred for a further 3 min, and excess calcium is then destroyed by the dropwise addition of bromobenzene ca. 4 ml). Water (5 ml) is added cautiously and the ammonia is allowed to evaporate. The toluene is removed by distillation on a steam-bath under reduced pressure and methanol (200 ml) is added to the residue, followed by a solution of potassium hydroxide (5 g) in water (10 ml). The mixture is boiled for 1 hr, water (50 ml) is added, and the mixture is warmed on the steam bath for 30 min in order to coagulate the product. Water (250 ml) and acetic acid (15 ml) are added, the mixture is cooled and the product filtered, washed thoroughly with water and dried to give 12.3 g of crude 11-ketotigogenin, mp 209-218° Md, -31°. [Pg.53]

The reaction mixture is diluted with 250 ml of water, the mixture is transferred to a 2 liter flask using methanol as a wash liquid, and the organic solvents are distilled at 20-25 mm using a rotary vacuum evaporator. The product separates as a solid and distillation is continued until most of the residual toluene has been removed. The solid is collected on a 90 cm, medium porosity, fritted glass Buchner funnel and washed well with cold water. After the material has been sucked dry, it is covered with a little cold methanol, the mixture is stirred to break up lumps, and the slurry is kept for 5 min. The vacuum is reapplied, the solid is rinsed with a little methanol followed by ether, and the material is air-dried to give 9.1 g (85%), mp 207-213° after sintering at ca. 198°. Reported mp 212-213°. The crude material contains 1.0-1.5% of unreduced starting material as shown by the UV spectrum. Further purification may be effected by crystallization from methanol. [Pg.55]

In a 250 ml Erlenmeyer flask covered with aluminum foil, 14.3 g (0.0381 mole) of 17a-acetoxy-3j5-hydroxypregn-5-en-20-one is mixed with 50 ml of tetra-hydrofuran, 7 ml ca. 0.076 mole) of dihydropyran, and 0.15 g of p-toluene-sulfonic acid monohydrate. The mixture is warmed to 40 + 5° where upon the steroid dissolves rapidly. The mixture is kept for 45 min and 1 ml of tetra-methylguanidine is added to neutralize the catalyst. Water (100 ml) is added and the organic solvent is removed using a rotary vacuum evaporator. The solid is taken up in ether, the solution is washed with water and saturated salt solution, dried over sodium sulfate, and then treated with Darco and filtered. Removal of the solvent followed by drying at 0.2 mm for 1 hr affords 18.4 g (theory is 17.5 g) of solid having an odor of dihydropyran. The infrared spectrum contains no hydroxyl bands and the crude material is not further purified. This compound has not been described in the literature. [Pg.56]


See other pages where Toluene crude is mentioned: [Pg.44]    [Pg.836]    [Pg.66]    [Pg.376]    [Pg.44]    [Pg.836]    [Pg.66]    [Pg.376]    [Pg.5]    [Pg.179]    [Pg.251]    [Pg.551]    [Pg.626]    [Pg.669]    [Pg.765]    [Pg.766]    [Pg.823]    [Pg.823]    [Pg.931]    [Pg.107]    [Pg.161]    [Pg.107]    [Pg.204]    [Pg.205]    [Pg.97]    [Pg.40]    [Pg.45]    [Pg.99]    [Pg.237]   
See also in sourсe #XX -- [ Pg.405 ]




SEARCH



© 2024 chempedia.info