Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stoichiometric reduction

In the early work on the synthesis of prostaglandins, zinc borohydride was used for the reduction of the 15-ketone function and a 1 1 mixture of epimeric 15(S)- and 15(/ )-alcohols was generally obtained. Subsequent studies led to reaction conditions for highly selective reduction to the desired 15(S)-alcohol. Some of the results are summarized in the following table. The most practical method is E which utilizes borane as the stoichiometric reductant and a chiral, enzyme-like catalyst which is shown. [Pg.260]

Metal-induced reductive dimerization of carbonyl compounds is a useful synthetic method for the formation of vicinally functionalized carbon-carbon bonds. For stoichiometric reductive dimerizations, low-valent metals such as aluminum amalgam, titanium, vanadium, zinc, and samarium have been employed. Alternatively, ternary systems consisting of catalytic amounts of a metal salt or metal complex, a chlorosilane, and a stoichiometric co-reductant provide a catalytic method for the formation of pinacols based on reversible redox couples.2 The homocoupling of aldehydes is effected by vanadium or titanium catalysts in the presence of Me3SiCl and Zn or A1 to give the 1,2-diol derivatives high selectivity for the /-isomer is observed in the case of secondary aliphatic or aromatic aldehydes. [Pg.15]

The Barton-McCombie process is an important synthetic tool for the generation of radical species. Me3SiO-(SiHMeO)n-SiMe3 works as a stoichiometric reductant in the tin-catalyzed reaction since Bu3Sn(OPh) is reduced to Bu3SnH as shown in Scheme 31 [71]. [Pg.81]

Abstract Significant advances have been made in the study of catalytic reductive coupling of alkenes and alkynes over the past 10 years. This work will discuss the progress made in early transition metal and lanthanide series catalytic processes using alkyl metals or silanes as the stoichiometric reductants and the progress made in the use of late transition metals for the same reactions using silanes, stannanes and borohydrides as the reductant. The mechanisms for the reactions are discussed along with stereoselective variants of the reactions. [Pg.216]

Waymouth and coworkers used chiral zirconocene complexes such as 56 with Et3Al as the stoichiometric reductant to enantioselectively desymmeter-ize oxabicyclic compounds (Scheme 9) [29]. A reductive coupling mechanism to give 57 followed by (i-alkoxidc ring opening and transmetallation is consistent with the experimental results. Neither direct insertion of the alkene into the M - C bond nor nucleophilic attack mechanisms can be ruled out, however [12]. [Pg.227]

All of the reactions described above use anionic alkyl metal complexes as stoichiometric reductants. Cationic zirconium catalyst 58 was shown to re-ductively cyclize a variety of 1,5-dienes to give both mono- and bicyclic silane products when H3SiPh was employed as the stoichiometric reductant (Scheme 10) [32]. Poor yields due to competing polymerization processes were observed when less substituted dienes were employed. It is likely that... [Pg.227]

Other metal hydrogen donors can be used in place of silanes. For instance, cyclization of substituted 1,5- and 1,6-dienes in the presence of Cp 2SmTHF, using a borohydride as the stoichiometric reductant, has been reported other... [Pg.235]

Cationic palladium complex 121 reductively coupled enynes (Eq. 20) using trichlorosilane as the stoichiometric reductant [71]. This combination of catalyst and silane afforded silylated methylenecyclopentanes such as 122 in good yield from enynes such as 123. Attempts to develop an enantioselective version of this reaction were not successful [71]. When enediyne 124 was cyclized in the presence of trichlorosilane, the reaction favored enyne cycli-zation 126 by a 3 1 ratio over diyne cyclization to 125 (Eq. 21). In contrast, when the more electron-rich dichloromethylsilane was used as the reductant, diyne cyclization product 125 was preferred in a ratio of 4 1 [71]. Selectivities of up to 10 1 for enyne cyclization were observed, depending on the substrate employed [72],... [Pg.242]

Rhodium and rhodium-cobalt based catalysts using silanes as the stoichiometric reductant were initially reported in 1992 to reductively couple enyne substrate (Eq. 30) [90,91]. Further investigation showed this reaction to be an effective method for the cyclization of enyne substrates 129 to... [Pg.248]

Some insulating oxides become semiconducting by doping. This can be achieved either by inserting certain heteroatoms into the crystal lattice of the oxide, or more simply by its partial sub-stoichiometric reduction or oxidation, accompanied with a corresponding removal or addition of some oxygen anions from/into the crystal lattice. (Many metal oxides are, naturally, produced in these mixed-valence forms by common preparative techniques.) For instance, an oxide with partly reduced metal cations behaves as a n-doped semiconductor a typical example is Ti02. [Pg.322]

In such a sequence the first complex incorporating the elements H, C, and O is a metal formyl species in Section II,A we describe the preparation and properties of such complexes. In Section II,B, stoichiometric reductions of both metal carbonyl and metal acyl species are presented and in Section II,C, homogeneous CO/H2 conversion catalysts are discussed. [Pg.67]

In none of the cases discussed above is molecular hydrogen involved. The first report of the stoichiometric reduction of coordinated carbon monoxide by molecular hydrogen is that published by Bercaw et al. (35, 36). They reported that mononuclear carbonyl and hydride complexes of bis(pentamethylcyclopentadienyl)zirconium are capable of promoting stoichiometric H2 reduction of CO to methoxide under mild conditions. Thus, treatment of the dicarbonyl complex (rj5-C5Me5)2Zr(CO)2 with... [Pg.70]

The use of organomagnesium reagents as terminal reductants in zirconocene-catalyzed diene reductive cyclization permits derivatization of the resulting bis(magnesiomethyl)cycloalkanes. However, the use of other stoichiometric reductants is likely to afford catalytic systems that exhibit complementary selectivity profiles. Molander reports the... [Pg.495]

Fe 2S], a [4Fe-4S] and a [3Fe-4S] center. The enzyme catalyzes the reversible redox conversion of succinate to fumarate. Voltammetry of the enzyme on PGE electrodes in the presence of fumarate shows a catalytic wave for the reduction of fumarate to succinate (much more current than could be accounted for by the stoichiometric reduction of the protein active sites). Typical catalytic waves have a sigmoidal shape at a rotating disk electrode, but in the case of succinate dehydrogenase the catalytic wave shows a definite peak. This window of optimal potential for electrocatalysis seems to be a consequence of having multiple redox sites within the enzyme. Similar results were obtained with DMSO reductase, which contains a Mo-bis(pterin) active site and four [4Fe 4S] centers. [Pg.392]

Stoichiometric reduction of carbonyl compounds with tetraalkylammonium borohydrides... [Pg.479]

In Figure 13.19 we have shown a route to L-699,392 published by Merck involving three steps based on homogeneous catalysts, viz. two Heck reactions and one asymmetric hydrogen transfer reaction, making first an alcohol and subsequently a sulphide [21], Stoichiometric reductions for the ketone function have been reported as well [22] and the Heck reaction on the left-hand side can be replaced by a classic condensation reaction. L-699,392 is used in the treatment of asthma and related diseases. [Pg.285]

The most stable oxidation states of chromium in the subsurface environment are Cr(III) and Cr(VI), the latter being more toxic and more mobile. The oxidation of Cr(III) in subsurface aqueous solutions is possible in a medium characterized by the presence of Mn(IV) oxides. Eary and Rai (1987), however, state that the extent of Cr(III) oxidation may be limited by the adsorption of anionic Cr(VI) in acidic solutions and the adsorption and precipitation of various forms of Cr(OH). These authors also report a rapid quantitative stoichiometric reduction of aqueous Cr(VI) by aqueous Fe(ll), in a pH range covering the acidity variability in the subsurface even in oxygenated solutions. [Pg.321]

Tris[(2-perfluorohexyl)ethyl]tin hydride has three perfluorinated segments with ethylene spacers and it partitions primarily (> 98%) into the fluorous phase in a liquid-liquid extraction. This feature not only facilitates the purification of the product from the tin residue but also recovers toxic tin residue for further reuse. Stoichiometric reductive radical reactions with the fluorous tin hydride 3 have been previously reported and a catalytic procedure is also well established. The reduction of adamantyl bromide in BTF (benzotrifluoride) " using 1.2 equiv of the fluorous tin hydride and a catalytic amount of azobisisobutyronitrile (AIBN) was complete in 3 hr (Scheme 1). After the simple liquid-liquid extraction, adamantane was obtained in 90% yield in the organic layer and the fluorous tin bromide was separated from the fluorous phase. The recovered fluorous tin bromide was reduced and reused to give the same results. Phenylselenides, tertiary nitro compounds, and xanthates were also successfully reduced by the fluorous fin hydride. Standard radical additions and cyclizations can also be conducted as shown by the examples in Scheme 1. Hydrostannation reactions are also possible, and these are useful in the techniques of fluorous phase switching. Carbonylations are also possible. Rate constants for the reaction of the fluorous tin hydride with primary radicals and acyl radicals have been measured it is marginally more reactive than tributlytin hydrides. ... [Pg.4]

The CBS-reduction [137] of prochiral ketones is a well-known process which employs a chiral oxazaboroHdine as catalyst and BHs-THF or catecholborane as stoichiometric reductants. It is believed that the active catalytic species is a LLA, resulting from coordination of the oxazaborolidine nitrogen with the boron reagent to render the oxazaborolidine boron atom highly Lewis acidic [87]. Similarly, Corey... [Pg.126]

Metal carbonyl cluster compounds which contain three ruthenium or three osmium atoms in the cluster core are common.1 Potentially useful reagents for syntheses of these compounds are the triruthenium and triosmium dianions [M3(CO)h]2 (M = Ru, Os).2 Therefore, it is desirable to develop good synthetic routes to obtain [M3(CO)11]2- (M = Ru, Os) of high purity in high yields. A method that is particularly useful for generating [M3(CO)n]2 (M = Ru, Os) is the designed stoichiometric reduction of M3(CO)12 (M = Ru, Os) using an electron carrier such as potassium-benzophenone.3... [Pg.270]


See other pages where Stoichiometric reduction is mentioned: [Pg.344]    [Pg.28]    [Pg.360]    [Pg.65]    [Pg.80]    [Pg.114]    [Pg.220]    [Pg.228]    [Pg.230]    [Pg.231]    [Pg.238]    [Pg.243]    [Pg.247]    [Pg.32]    [Pg.85]    [Pg.69]    [Pg.379]    [Pg.344]    [Pg.504]    [Pg.518]    [Pg.441]    [Pg.441]    [Pg.88]    [Pg.94]    [Pg.236]    [Pg.192]    [Pg.824]    [Pg.196]    [Pg.815]   
See also in sourсe #XX -- [ Pg.185 ]

See also in sourсe #XX -- [ Pg.185 ]




SEARCH



Coefficients stoichiometric, reduction

Olefin Hydrogenation Using H2 as a Stoichiometric Reductant

Stoichiometric CO Reduction (Model Reactions)

Stoichiometric Reduction Systems

Stoichiometric number oxygen reduction

© 2024 chempedia.info