Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonyl compounds saturated

Nevertheless only scare data is available in the recent literature on the application of Group VIII noble metal (M) or rhenium-based mono- and Re-M bimetallic catalysts, in the hydrogenolysis of esters or hydrogenation of acids to alcohols. Recently a few publications, - and patents. have been reported on the transformation of different carbonyl compounds (saturated and unsaturated esters, acids and carboxamides) over rhenium-containing catalysts. In the bimetallic catalysts used for the hydrogenation of carbonyl compounds the rhenium was combined with Pd, or Rh. In the case of catalysts used for the hydrogenation of unsaturated carbonyl compounds the rhenium is usually modified with tin. ... [Pg.68]

The most commonly used protected derivatives of aldehydes and ketones are 1,3-dioxolanes and 1,3-oxathiolanes. They are obtained from the carbonyl compounds and 1,2-ethanediol or 2-mercaptoethanol, respectively, in aprotic solvents and in the presence of catalysts, e.g. BF, (L.F. Fieser, 1954 G.E. Wilson, Jr., 1968), and water scavengers, e.g. orthoesters (P. Doyle. 1965). Acid-catalyzed exchange dioxolanation with dioxolanes of low boiling ketones, e.g. acetone, which are distilled during the reaction, can also be applied (H. J. Dauben, Jr., 1954). Selective monoketalization of diketones is often used with good success (C. Mercier, 1973). Even from diketones with two keto groups of very similar reactivity monoketals may be obtained by repeated acid-catalyzed equilibration (W.S. Johnson, 1962 A.G. Hortmann, 1969). Most aldehydes are easily converted into acetals. The ketalization of ketones is more difficult for sterical reasons and often requires long reaction times at elevated temperatures. a, -Unsaturated ketones react more slowly than saturated ketones. 2-Mercaptoethanol is more reactive than 1,2-ethanediol (J. Romo, 1951 C. Djerassi, 1952 G.E. Wilson, Jr., 1968). [Pg.165]

Addition of dihydrosilane to a, /J-unsaturated carbonyl compounds such as citral (49), followed by hydrolysis, affords saturated citroneJlal (50) directly. The reaction is used for the selective reduction of conjugated double bonds[45,46]. In addition to Pd catalyst, the use of a catalytic amount of... [Pg.518]

Triethylammonium formate is another reducing agent for q, /3-unsaturated carbonyl compounds. Pd on carbon is better catalyst than Pd-phosphine complex, and citral (49) is reduced to citronellal (50) smoothly[55]. However, the trisubstituted butenolide 60 is reduced to the saturated lactone with potassium formate using Pd(OAc)2. Triethylammonium formate is not effective. Enones are also reduced with potassium formate[56]. Sodium hypophosphite (61) is used for the reduction of double bonds catalyzed by Pd on charcoal[57]. [Pg.520]

Acetaldehyde can be isolated and identified by the characteristic melting points of the crystalline compounds formed with hydrazines, semicarbazides, etc these derivatives of aldehydes can be separated by paper and column chromatography (104,113). Acetaldehyde has been separated quantitatively from other carbonyl compounds on an ion-exchange resin in the bisulfite form the aldehyde is then eluted from the column with a solution of sodium chloride (114). In larger quantities, acetaldehyde may be isolated by passing the vapor into ether, then saturating with dry ammonia acetaldehyde—ammonia crystallizes from the solution. Reactions with bisulfite, hydrazines, oximes, semicarb azides, and 5,5-dimethyl-1,3-cyclohexanedione [126-81 -8] (dimedone) have also been used to isolate acetaldehyde from various solutions. [Pg.53]

A particularly useful reaction has been the selective 1,2-reduction of a, P-unsaturated carbonyl compounds to aHyUc alcohols, accompHshed by NaBH ia the presence of lanthanide haUdes, especially cerium chloride. Initially appHed to ketones (33), it has been broadened to aldehydes (34) and acid chlorides (35). NaBH by itself gives mixtures of the saturated and unsaturated alcohols. [Pg.304]

Although saturated alcohols are sufftcientiy stable toward quinones to be used as solvents for these oxidation reactions, hen2ylic (43) and aHyUc alcohols are often readily converted to the corresponding carbonyl compounds (44), as shown in equation 2 for ben2ene systems (33). For the substituents indicated, yields are as follows ... [Pg.408]

In similar work, CF3CCI2CO2CH3 yields methyl a-trifluoromethyl-a,(i-un-saturated carboxylates when reacted with a zinc-copper couple, aldehydes, and acetic anhydride [67] (equation 55). This methodology gives (Z)-a-fluoro-a- -un-saturated carboxylates from the reaction of carbonyl compounds with CFCI2CO2CH3 and zinc and acetic anhydride [6 ]. [Pg.683]

The Lewis acid-catalyzed 1,3-dipolar cycloaddition reaction of nitrones to a,/ -un-saturated carbonyl compound in the presence of Lewis acids has been investigated by Tanaka et al. [31]. Ab-initio calculations were performed in a model reaction of the simple nitrone 18 reacting with acrolein 1 to give the two cycloadducts 19 and 20 (Scheme 8.7). [Pg.322]

As discussed in Chapter 6, nitro compounds are converted into amines, oximes, or carbonyl compounds. They serve as usefid starting materials for the preparation of various heterocyclic compounds. Especially, five-membered nitrogen heterocycles, such as pyrroles, indoles, ind pyrrolidines, are frequently prepared from nitro compounds. Syntheses of heterocyclic compounds using nitro compounds are described partially in Chapters 4, 6 and 9. This chapter focuses on synthesis of hetero-aromadcs fmainly pyrroles ind indolesi ind saturated nitrogen heterocycles such as pyrrolidines ind their derivadves. [Pg.325]

Unsaturated alcohols may be converted to saturated carbonyl compounds as a result of migration (75). When migration relative to saturation is high, the isomerization gains synthetic utility (9,49). [Pg.36]

Reduction of unsaturated carbonyl compounds to the saturated carbonyl is achieved readily and in high yield. Over palladium the reduction will come to a near halt except under vigorous conditions (73). If an aryl carbonyl compound, or a vinylogous aryl carbonyl, such as in cinnamaldehyde is employed, some reduction of the carbonyl may occur as well. Carbonyl reduction can be diminished or stopped completely by addition of small amounts of potassium acetate (i5) to palladium catalysts. Other effective inhibitors are ferrous salts, such asferroussulfate, at a level of about one atom of iron per atom of palladium. The ferrous salt can be simply added to the hydrogenation solution (94). Homogeneous catalysts are not very effective in hydrogenation of unsaturated aldehydes because of the tendencies of these catalysts to promote decarbonylation. [Pg.40]

Ruthenium is excellent for hydrogenation of aliphatic carbonyl compounds (92), and it, as well as nickel, is used industrially for conversion of glucose to sorbitol (14,15,29,75,100). Nickel usually requires vigorous conditions unless large amounts of catalyst are used (11,20,27,37,60), or the catalyst is very active, such as W-6 Raney nickel (6). Copper chromite is always used at elevated temperatures and pressures and may be useful if aromatic-ring saturation is to be avoided. Rhodium has given excellent results under mild conditions when other catalysts have failed (4,5,66). It is useful in reduction of aliphatic carbonyls in molecules susceptible to hydrogenolysis. [Pg.67]

To a solution of the lithium dialkylamide (1.1 mmol) in THF (2 ml) cooled to -78°C was added a solution to TMSC1 (5-10mmoI) in THF (2ml), also cooled to -78 °C. This was followed by dropwise addition of the carbonyl compound (lmmol) in THF (2ml). After lmin, triethylamine (2ml) was added, followed by quenching with saturated sodium hydrogen carbonate solution. The product was extracted into pentane, and these extracts were... [Pg.60]

Considering the formation of saturated five-membered heterocycles with two heteroatoms, it is worth to note the possibility to prepare 1,3-dioxolanes, dithiane, oxathianes 148 [93] and dioxolanones 149 [94] by condensation of the corresponding carbonyl compounds under microwave irradiation in acid medium (Scheme 52). The reaction, which is very useful for the protection of carbonyl compounds or for the preparation of useful synthetic intermediates, has also been carried out under batch conditions over Montmorillonite KIO clay in more than 150 g scale, using a 1 L quartz reactor [95]. [Pg.240]

The diazo transfer reaction between p-toluenesulfonyl azide and active methylene compounds is a useful synthetic method for the preparation of a-diazo carbonyl compounds. However, the reaction of di-tert-butyl malonate and p-toluenesulfonyl azide to form di-tert-butyl diazomalonate proceeded to the extent of only 47% after 4 weeks with the usual procedure." The present procedure, which utilizes a two-phase medium and methyltri-n-octylammonium chloride (Aliquat 336) as phase-transfer catalyst, effects this same diazo transfer in 2 hours and has the additional advantage of avoiding the use of anhydrous solvents. This procedure has been employed for the preparation of diazoacetoacetates, diazoacetates, and diazomalonates (Table I). Ethyl and ten-butyl acetoacetate are converted to the corresponding a-diazoacetoacetates with saturated sodium carbonate as the aqueous phase. When aqueous sodium hydroxide is used with the acetoace-tates, the initially formed a-diazoacetoacetates undergo deacylation to the diazoacetates. Methyl esters are not suitable substrates, since they are too easily saponified under these conditions. [Pg.35]

Catalytic systems at very low metal loading 0.1% (w/w) obtained in this way can be conveniently used in the hydrogenation of a,P-unsaturated ketones to the corresponding saturated carbonyl compounds with very high efficiencies and selectivities. In Table 4 we report the results obtained in the selective hydrogenation of 4-(6-methoxy-2-naphthyl)-3-buten-2-one, 1, and 2-acetyl-5,8-dimethoxy-3,4-dihydronaphthalene, 2, to the corresponding saturated carbonyl products (I), which are important intermediates... [Pg.446]

Carbonyl reactions are extremely important in chemistry and biochemistry, yet they are often given short shrift in textbooks on physical organic chemistry, partly because the subject was historically developed by the study of nucleophilic substitution at saturated carbon, and partly because carbonyl reactions are often more difhcult to study. They are generally reversible under usual conditions and involve complicated multistep mechanisms and general acid/base catalysis. In thinking about carbonyl reactions, 1 find it helpful to consider the carbonyl group as a (very) stabilized carbenium ion, with an O substituent. Then one can immediately draw on everything one has learned about carbenium ion reactivity and see that the reactivity order for carbonyl compounds ... [Pg.4]

Delocalisation takes place (cf. 1,3-dienes, p. 13), so that an electron-deficient atom results at C3, as well as at C, as in a simple carbonyl compound. The difference between this transmission via a conjugated system, and the inductive effect in saturated system, is that here the effect suffers much less diminution by its transmission, and the polarity at adjacent carbon atoms alternates. [Pg.23]

R groups in which the C=0 group is conjugated with C=C (1,4-addition can also compete here, cf. p. 200), or with a benzene ring, also exhibit slower addition reactions than their saturated analogues. This is because the stabilisation, through delocalisation, in the initial carbonyl compounds (7 and 8) is lost on proceeding to the adducts (9 and 10), and to the transition states that precede them ... [Pg.205]

Although there are now several catalysts useful for hydrogenation of saturated carbonyl compounds to alcohols (see Section XII), an alternative approach has involved initial hydrosilylation (Chapter 9 in this volume) followed by acid hydrolysis [Eq. (41)]. The area first developed using principally the RhCl(PPh3)3 catalyst (207-210), and has since proved particularly useful in asymmetric syntheses (see Section III,A,4). Besides simple aliphatic and aromatic aldehydes and ketones, the ter-pene-ketones camphor and menthone were stereoselectively reduced to mainly the less stable alcohols e.g., camphor gave 9 (209). [Pg.337]

Thus the weak n — n band in a saturated carbonyl compound is shifted from below 300 nm to above 300 nm with an increase in s. Conjugation of additional chromophoric groups moves mx progressively... [Pg.367]

The isomerization of allylic alcohols provides an enol (or enolate) intermediate, which tautomerizes to afford the saturated carbonyl compound (Equation (8)). The isomerization of allylic alcohols to saturated carbonyl compounds is a useful synthetic process with high atom economy, which eliminates conventional two-step sequential oxidation and reduction.25,26 A catalytic one-step transformation, which is equivalent to an internal reduction/oxidation process, is a conceptually attractive strategy due to easy access to allylic alcohols.27-29 A variety of transition metal complexes have been employed for the isomerization of allylic alcohols, as shown below. [Pg.76]

Various ruthenium complexes catalyze the isomerization of allylic alcohols to saturated carbonyl compounds. Ru(acac)3 is an effective catalyst for the isomerization of a wide range of allylic alcohols (Scheme 12).35... [Pg.78]


See other pages where Carbonyl compounds saturated is mentioned: [Pg.401]    [Pg.401]    [Pg.126]    [Pg.51]    [Pg.11]    [Pg.147]    [Pg.145]    [Pg.115]    [Pg.108]    [Pg.332]    [Pg.1198]    [Pg.168]    [Pg.332]    [Pg.406]    [Pg.435]    [Pg.1336]    [Pg.15]    [Pg.343]    [Pg.226]    [Pg.1151]    [Pg.280]    [Pg.137]    [Pg.218]    [Pg.51]    [Pg.465]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Activated hydrogens in saturated carbonyl compounds

Carbonyls saturated

Saturated Acyclic Carbonyl Compounds

Saturated Cyclic Carbonyl Compounds

Saturated compounds

Saturation compound

© 2024 chempedia.info