Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tire production

Because a good catalyst is not consumed to a significant degree as it functions, catalysis is a cyclic process, and compact representations of catalysis are cycles tliat show tire various intennediate species, illustrated by the following simple example, where C is tire catalyst, R tire reactant, P tire product and RC tire intennediate ... [Pg.2699]

Zeolites are tire product of a hydrotliennal conversion process [28]. As such tliey can be found in sedimentary deposits especially in areas tliat show signs of fonner volcanic activity. There are about 40 naturally occurring zeolite types. Types such as chabazite, clinoptilolite, mordenite and phillipsite occur witli up to 80% phase purity in quite large... [Pg.2783]

The important issues are how energy is partitioned, tire degree of coherence in tire fonnation of tire product and whetlier tire reaction is adiabatic (solvent easily follows reactant motions) or nonadiabatic [8]. A nonadiabatic tlieory would be much more complicated. [Pg.3043]

Until the 1960s, reclaimed mbber was an important raw material in molded and extmded mbber products, eg, tires, mbber mats, and hard mbber battery cases. With the advent of vinyl, other plastics, and less expensive oil-extended synthetic polymers, reclaimed mbber sales stabilized and decreased. In 1973, the oil embargo and rising energy costs increased costs of the energy-intensive mbber reclaiming process to the point where they matched virgin polymer costs. Increased radial tire production required crack resistance that could not be provided by reclaimed mbber compounds (46). [Pg.19]

The basis for reinforcement of a pneumatic tire requires placing the strength or tensile member in a preferred direction, depending on the location and cord function in the tire. An overview of the tire production process, including essential elements of transforming a continuous yam into a usehil embodiment for tire reinforcement, is shown in Figure 2. [Pg.83]

The basic principles and approaches to manufacturing pneumatic tires have been in place for many years, and because of the scale of modem tire production, radical change is slow. However, developments of new tire production processes continue (44,45) and as new methods take hold, it is likely that changes in tire cord handling and preparation will be required. [Pg.85]

Economic Aspects. Table 3 shows that mbber production is the largest market for zinc oxide the downturn in 1980 resulted from a drop in tire production because of the production trend to smaller tires, more importation of tires, and a recession. The drop in paint usage reflects the trend to water-base paints, which originally contained no zinc oxide. However, its growing use in such paints is based upon improved formulations based on zinc oxide. The increased use in agriculture is a result of the realization of the importance of zinc as a trace element. The rise in use of zinc-oxide-coated paper for photocopying is followed by a slackening in use because of a shift to plain-paper copiers. [Pg.422]

An explanation which is advanced for these reactions is that some molecules collide, but do trot immediately separate, and form dimers of dre reactant species which have a long lifetime when compared with the period of vibration of molecules, which is about 10 seconds. In the first-order reaction, the rate of tire reaction is therefore determined by the rate of break-up of tirese dimers. In the thud-order reaction, the highly improbable event of a tluee-body collision which leads to the formation of tire products, is replaced by collisions between dimers of relatively long lifetime widr single reactant molecules which lead to tire formation of product molecules. [Pg.51]

Because of the possibility of focusing laser beams, tlrin films can be produced at precisely defined locations. Using a microscope train of lenses to focus a laser beam makes possible tire production of microregions suitable for application in computer chip production. The photolytic process produces islands of product nuclei, which act as preferential nucleation sites for further deposition, and tlrus to some unevenness in tire product film. This is because the subsuate is relatively cool, and therefore tire surface mobility of the deposited atoms is low. In pyrolytic decomposition, the region over which deposition occurs depends on the drermal conductivity of the substrate, being wider the lower the thermal conductivity. For example, the surface area of a deposit of silicon on silicon is nanower dran the deposition of silicon on silica, or on a surface-oxidized silicon sample, using the same beam geomeU y. [Pg.83]

A situation which is frequently encountered in tire production of microelectronic devices is when vapour deposition must be made into a re-entrant cavity in an otherwise planar surface. Clearly, the gas velocity of the major transporting gas must be reduced in the gas phase entering the cavity, and transport down tire cavity will be mainly by diffusion. If the mainstream gas velocity is high, there exists the possibility of turbulent flow at tire mouth of tire cavity, but since this is rare in vapour deposition processes, the assumption that the gas widrin dre cavity is stagnant is a good approximation. The appropriate solution of dre diffusion equation for the steady-state transport of material tlrrough the stagnant layer in dre cavity is... [Pg.108]

Stable oxides, such as those of clrromium, vanadium and titanium cannot be reduced to the metal by carbon and tire production of these metals, which have melting points above 2000 K, would lead to a refractoty solid containing carbon. The co-reduction of the oxides widr iron oxide leads to the formation of lower melting products, the feno-alloys, and tlris process is successfully used in industrial production. Since these metals form such stable oxides and carbides, tire process based on carbon reduction in a blast furnace would appear to be unsatisfactory, unless a product samrated with carbon is acceptable. This could not be decarburized by oxygen blowing without significairt re-oxidation of the refractory metal. [Pg.335]

The melt is heated by passing a large elecuical cunent between two electrodes, one of which is tire metal rod to be refined, and the otlrer is the liquid metal pool standing in a water-cooled copper hearth, which collects the metal drops as tlrey fall tluough the molten electrolyte. This pool tlrerefore freezes at the bottom, forming the ingot. Under optimum chcumstances tire product billet takes the form of a cylindrical solid separated from the molten salt by... [Pg.363]

NR adhesives perform adequately under peeling stresses. The peel strength can vary from a few N/m in PSA formulations to substrate tear in vulcanized compounds used in hose, belting and tire products. [Pg.648]

Carbon black is also used as a pigment for paints and printing inks, as a nucleation agent in weather modifications, and as a solar energy absorber. About 70% of the worlds consumption of carbon black is used in the production of tires and tire products. Approximately 20% goes into other products such as footwear, belts, hoses, etc. and the rest is used in such items as paints, printing ink, etc. The world capacity of carbon black was approximately 17 billion pounds in 1998. U.S. projected consumption for the year 2003 is approximately 3.9 billion pounds. [Pg.121]

This chapter discusses synthetic polymers based primarily on monomers produced from petroleum chemicals. The first section covers the synthesis of thermoplastics and engineering resins. The second part reviews thermosetting plastics and their uses. The third part discusses the chemistry of synthetic rubbers, including a brief review on thermoplastic elastomers, which are generally not used for tire production but to make other rubber products. The last section addresses synthetic fibers. [Pg.324]

The major use of rubber is for tire production. Non-tire consumption includes hoses, footwear, molded and extruded materials, and plasticizers. [Pg.351]

The main use of SBR is for tire production. Other uses include footwear, coatings, carpet backing, and adhesives. [Pg.353]

Neoprene rubber could be used for tire production, but it is expensive. Major uses include cable coatings, mechanical goods, gaskets, conveyor belts, and cables. [Pg.356]

Initially fermentation broth has to be characterised on the viscosity of the fluid. If the presence of the biomass or cells causes trouble, they have to be removed. Tire product is stored inside the cells, the cells must be ruptured and the product must be freed. Intracellular protein can easily be precipitated, settled or filtered. In fact the product in diluted broth may not be economical enough for efficient recovery. Enrichment of the product from the bioreactor effluents for increasing product concentration may reduce the cost of product recovery. There are several economical methods for pure product recovery, such as crystallisation of the product from the concentrated broth or liquid phase. Even small amounts of cellular proteins can be lyophilised or dried from crude solution of biological products such as hormone or enzymes.2,3... [Pg.170]

Only a few diacvl peroxides see widespread use as initiators of polymerization. The reactions of the diaroyl peroxides (36, R=aryl) will be discussed in terms of the chemistry of BPO (Scheme 3.25). The rate of p-scission of thermally generated benzoyloxy radicals is slow relative to cage escape, consequently, both benzoyloxy and phenyl radicals are important as initiating species. In solution, the only significant cage process is reformation of BPO (ca 4% at 80 °C in isooctane) II"l only minute amounts of phenyl benzoate or biphenyl are formed within the cage. Therefore, in the presence of a reactive substrate (e.g. monomer), tire production of radicals can be almost quantitative (see 3.3.2.1.3). [Pg.82]

Recent Developments in Rubber Mixing and Cord Calendering in Tire Production... [Pg.975]


See other pages where Tire production is mentioned: [Pg.2062]    [Pg.2424]    [Pg.2711]    [Pg.2767]    [Pg.2787]    [Pg.2789]    [Pg.2789]    [Pg.2808]    [Pg.2836]    [Pg.2948]    [Pg.6]    [Pg.15]    [Pg.231]    [Pg.7]    [Pg.45]    [Pg.68]    [Pg.131]    [Pg.144]    [Pg.323]    [Pg.347]    [Pg.358]    [Pg.25]    [Pg.84]    [Pg.1140]    [Pg.161]    [Pg.135]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Tires

© 2024 chempedia.info