Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thin reactor

The 4S FR concept was proposed and developed by CRIEPI — Toshiba (Japan). Tlie main features of reactor design are a tall thin reactor core (an equivalent diameter 90 cm, length 4 m) and axially moveable radial reflector for compensation of bumup reactivity. Its reference design of 50 MW(e) was for 10 years of electric power output without refuelling and without the use of the safety rod for bum up reactivity control. Now, the CRIEPI — Toshiba team has proposed a new design variant for 24 years of full power operation without refuelling. It uses part of the reactivity worth of the safety-rod in addition to the radial reflector segments for bumup reactivity control. [Pg.8]

In the 4S design, the reactor building is isolated horizontally by seismic isolators. The design standard already exists for such isolators for nuclear power plants (NPPs) in Japan [XIV-8]. The thin reactor shape results in a higher characteristic frequency therefore, the 4S reactor could be rigid against vertical shock. [Pg.414]

Note that radial temperature profiles in the thin reactor are not considered, and integration is only needed in the axial direction. [Detailed measurements show that radial temperature differences are less than 20 K (Kern, 1998).] The integral in Eq. (4.11.30) is determined graphically by the area under the respective function, as shown in Figure 4.11.14 for an activation energy of 300 kj mol and a maximum temperature of 1200 °C. [Pg.393]

The reaction mixture in ethyl acetate is then transferred to a 100-ml reactor, purged under a nitrogen atmosphere, 340 mg of Lil is added, and the whole mass is then heated, with mechanical stirring, on an oil bath, up to ethyl acetate reflux temperature. The heating is continued for 5 hours, until the disappearance of the epoxide (II), as evidenced by the thin-layer chromatography. [Pg.190]

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

Molecular beam epitaxy (MBE) is a radically different growth process which utilizes a very high vacuum growth chamber and sources which are evaporated from controlled ovens (15,16). This technique is well suited to growing thin multilayer stmctures as a result of very low growth rates and the abihty to abmpdy switch source materials in the reactor chamber. The former has impeded the use of MBE for the growth of high volume LEDs. [Pg.118]

Similar to IFP s Dimersol process, the Alphabutol process uses a Ziegler-Natta type soluble catalyst based on a titanium complex, with triethyl aluminum as a co-catalyst. This soluble catalyst system avoids the isomerization of 1-butene to 2-butene and thus eliminates the need for removing the isomers from the 1-butene. The process is composed of four sections reaction, co-catalyst injection, catalyst removal, and distillation. Reaction takes place at 50—55°C and 2.4—2.8 MPa (350—400 psig) for 5—6 h. The catalyst is continuously fed to the reactor ethylene conversion is about 80—85% per pass with a selectivity to 1-butene of 93%. The catalyst is removed by vaporizing Hquid withdrawn from the reactor in two steps classical exchanger and thin-film evaporator. The purity of the butene produced with this technology is 99.90%. IFP has Hcensed this technology in areas where there is no local supply of 1-butene from other sources, such as Saudi Arabia and the Far East. [Pg.440]

Fusion Process. In the fusion process, also frequendy referred to as fusion cook, inert gas is continuously sparged from the bottom of the reactor to carry away water vapor from the reaction mixture. The exhaust is then either vented away or sent to a fume scmbber, which is frequendy a small vessel with water atomi2ing no22les. After the reaction is completed, the finished resin may be discharged, filtered, and packaged without solvent. More frequendy, it is cooled to a safe temperature, then dissolved in the desired type and amount of solvent in a thinning tank, filtered, and packaged, or pumped... [Pg.38]

With the ever increasing awareness of the need of environment protection, the emission of solvent vapors and organic fumes into the atmosphere should be prevented by treating the exhaust through a proper scmbber. The solvent used for cleaning the reactor is usually consumed as part of the thinning solvent. Aqueous effluent should be properly treated before discharge. [Pg.41]

The epitaxy reactor is a specialized variant of the tubular reactor in which gas-phase precursors are produced and transported to a heated surface where thin crystalline films and gaseous by-products are produced by further reaction on the surface. Similar to this chemical vapor deposition (CVE)) are physical vapor depositions (PVE)) and molecular beam generated deposits. Reactor details are critical to assuring uniform, impurity-free deposits and numerous designs have evolved (Fig. 22) (89). [Pg.523]

Nonferrous alloys account for only about 2 wt % of the total chromium used ia the United States. Nonetheless, some of these appHcations are unique and constitute a vital role for chromium. Eor example, ia high temperature materials, chromium ia amounts of 15—30 wt % confers corrosion and oxidation resistance on the nickel-base and cobalt-base superaHoys used ia jet engines the familiar electrical resistance heating elements are made of Ni-Cr alloy and a variety of Ee-Ni and Ni-based alloys used ia a diverse array of appHcations, especially for nuclear reactors, depend on chromium for oxidation and corrosion resistance. Evaporated, amorphous, thin-film resistors based on Ni-Cr with A1 additions have the advantageous property of a near-2ero temperature coefficient of resistance (58). [Pg.129]

Polyacetylenes. The first report of the synthesis of a strong, flexible, free-standing film of the simplest conjugated polymer, polyacetylene [26571-64-2] (CH), was made in 1974 (16). The process, known as the Shirakawa technique, involves polymerization of acetylene on a thin-film coating of a heterogeneous Ziegler-Natta initiator system in a glass reactor, as shown in equation 1. [Pg.35]

From the third reactor the polymer is then run into a devolatilising ( stripping ) vessel in the form of thin strands. At a temperature of 225°C the solvent, residual monomer and some very low molecular weight polymers are removed, condensed and recycled. The polymer is then fed to extruder units, extruded as filaments, granulated, lubricated and stored to await dispatch. [Pg.431]

The low molar ratio of the final UF-resin is adjusted by the addition of the so-called second urea, which might also be added in several steps [16-18]. Particular care and know-how are needed during this acid condensation step in order to produce resins of good performance, especially at the very low molar ratios usually in use today in the production of particleboard and MDF. This last reaction step generally also includes the vacuum distillation of the resin solution to the usual 63-66% solid content syrup in which form the resin is delivered. The distillation is performed in the manufacturing reactor itself or in a thin layer evaporator. Industrial preparation procedures are usually proprietary and are described in the literature in only a few cases [17-19]. [Pg.1047]

Gas-liquid contactors may be operated either by way of gas bubble dispersion into liquid or droplet dispersion in gas phase, while thin film reactors, i.e. packed columns and trickle beds are not suitable for solid formation due... [Pg.234]

Cells used for high-temperature measurements in furnaces often consist of silica sample tubes, supported by thin vanadium sleeves. The key to the analysis is whether it is possible to have a container that scatters in a sufficiently predictable way, so that its background contribution can be subtracted. With the current neutron flux available from both pulsed and reactor sources, sample volumes of... [Pg.130]

A three-step nitration process of toluene is described. The advantages of the modified process are reduced waste, less hazardous operation, reduced oleum requirement, partial replacement of coned HN03 with dil HN03, and higher rate of toluene flow into the reactor (Ref 86) The continuous process of H.C. Prime (Ref 73) for preparing TNT was studied by thin-layer chromatography on silica gel with a starch binder and a fluorescent indicator. The nitration... [Pg.264]

The thin film reactor for the continuous sulfonation of fatty acid esters was introduced by the Witco Technical Center in Oakland, New Jersey [46]. Hurl-bert et al. designed this type of reactor for small-scale sulfonation with S03 [47,48]. The reaction partners could be filled into the reactor through three inlets. One was for the carrier gas (air or nitrogen), one for the liquefied ester that is picked up from the carrier gas, and the last one was for the vaporized S03. The ester and the S03 reacted in a turbulent liquid film. Details of this reactor are given by Kapur et al. [46]. [Pg.469]


See other pages where Thin reactor is mentioned: [Pg.68]    [Pg.13]    [Pg.68]    [Pg.13]    [Pg.508]    [Pg.386]    [Pg.68]    [Pg.455]    [Pg.474]    [Pg.152]    [Pg.213]    [Pg.213]    [Pg.244]    [Pg.388]    [Pg.306]    [Pg.147]    [Pg.434]    [Pg.513]    [Pg.525]    [Pg.47]    [Pg.368]    [Pg.79]    [Pg.83]    [Pg.2105]    [Pg.2106]    [Pg.2224]    [Pg.2451]    [Pg.150]    [Pg.675]    [Pg.60]    [Pg.153]    [Pg.206]    [Pg.289]    [Pg.927]    [Pg.386]   
See also in sourсe #XX -- [ Pg.216 , Pg.247 ]




SEARCH



© 2024 chempedia.info