Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastics uniqueness

SAN resins are rigid, hard, transparent thermoplastics which process easily and have good dimensional stability—a combination of properties unique in transparent polymers. [Pg.1023]

Many challenging industrial and military applications utilize polychlorotriduoroethylene [9002-83-9] (PCTFE) where, ia addition to thermal and chemical resistance, other unique properties are requited ia a thermoplastic polymer. Such has been the destiny of the polymer siace PCTFE was initially synthesized and disclosed ia 1937 (1). The synthesis and characterization of this high molecular weight thermoplastic were researched and utilized duting the Manhattan Project (2). The unique comhination of chemical iaertness, radiation resistance, low vapor permeabiUty, electrical iasulation properties, and thermal stabiUty of this polymer filled an urgent need for a thermoplastic material for use ia the gaseous UF diffusion process for the separation of uranium isotopes (see Diffusion separation methods). [Pg.393]

The typical mechanical properties that qualify PCTFE as a unique engineering thermoplastic are provided ia Table 1 the cryogenic mechanical properties are recorded ia Table 2. Other unique aspects of PCTFE are resistance to cold flow due to high compressive strength, and low coefficient of thermal expansion over a wide temperature range. [Pg.393]

Phase Materials. Phase holograms can be recorded in a large variety of materials, the most popular of which are dichromated gelatin, photopolymers, thermoplastic materials, and photorefractive crystals. Dichromated gelatin and some photopolymers require wet processing, and thermoplastic materials require heat processing. Photorefractive crystals are unique in that they are considered to be real-time materials and require no after-exposure processing. [Pg.160]

Polyuretha.ne, A type of spunbonded stmcture has been commercialized in Japan based on thermoplastic polyurethanes (15). This represents the first commercial production of such fabrics, although spunbonded urethane fabrics have been previously discussed (16). The elastomeric properties claimed are unique for spunbonded products and appear to be weU suited for use in apparel and other appHcations requiring stretch and recovery. Polyurethanes are also candidates for processing by the meltblown process. [Pg.164]

Significant use properties of poly(ethylene oxide) are complete water solubiHty, low toxicity, unique solution rheology, complexation with organic acids, low ash content, and thermoplasticity. [Pg.344]

Aniline—formaldehyde resins were once quite important because of their excellent electrical properties, but their markets have been taken over by newer thermoplastic materials. Nevertheless, some aniline resins are stiU. used as modifiers for other resins. Acrylamide (qv) occupies a unique position in the amino resins field since it not only contains a formaldehyde reactive site, but also a polymerizable double bond. Thus it forms a bridge between the formaldehyde condensation polymers and the versatile vinyl polymers and copolymers. [Pg.322]

Urethanes are processed as mbber-like elastomers, cast systems, or thermoplastic elastomers. The elastomer form is mixed and processed on conventional mbber mills and internal mixers, and can be compression, transfer, or injection molded. The Hquid prepolymers are cast using automatic metered casting machines, and the thermoplastic peUets are processed like aU thermoplastic materials on traditional plastic equipment. The unique property of the urethanes is ultrahigh abrasion resistance in moderately high Shore A (75—95) durometers. In addition, tear, tensUe, and resistance to many oUs is very high. The main deficiencies of the urethanes are their resistance to heat over 100°C and that shear and sliding abrasion tend to make the polymers soft and gummy. [Pg.234]

Substituted Amide Waxes. The product of fatty acid amidation has unique waxlike properties (13). Probably the most widely produced material is N,1S7-distearylethylenediarnine [110-30-5] which has a melting point of ca 140°C, an acid number of ca 7, and a low melt viscosity. Because of its unusuaHy high melting point and unique functionaHty, it is used in additive quantities to raise the apparent melting point of themoplastic resins and asphalts, as an internal—external lubricant in the compounding of a variety of thermoplastic resins, and as a processing aid for elastomers. [Pg.317]

Thermoplastic polyesters achieved some commercial success during the mid-1980s however, these were eventually replaced by nylon coating powders in functional coatings and thermosetting polyester powders in decorative appHcations because of lack of any unique characteristics or price advantages (see Polyesters, thermoplastic). [Pg.319]

Block copolymers have become commercially valuable commodities because of their unique stmcture—property relationships. They are best described in terms of their appHcations such as thermoplastic elastomers (TPE), elastomeric fibers, toughened thermoplastic resins, compatibilizers, surfactants, and adhesives (see Elastot rs, synthetic—thermoplastic). [Pg.185]

The frictional properties of TPs, specifically the reinforced and filled types, vary in a way that is unique from metals. In contrast to metals, even the highly reinforced plastics have low modulus values and thus do not behave according to the classic laws of friction. Metal-to-thermoplastic friction is characterized by adhesion and deformation resulting in frictional forces that are not proportional to load, because friction decreases as load increases, but are proportional to speed. The wear rate is generally defined as the volumetric loss of material over a given unit of time. Several mechanisms operate simultaneously to remove material from the wear interface. However, the primary mechanism is adhesive wear, which is characterized by having fine particles of plastic removed from the surface. [Pg.410]

The synthesis of well defined block copolymers exhibiting controlled molecular weight, low compositional heterogeneity and narrow molecular weight distribution is a major success of anionic polymerization techniques 6,7,14-111,112,113). Blocks of unlike chemical nature have a general tendency to undergo microphase separation, thereby producing mesomorphic phases. Block copolymers therefore exhibit unique properties, that prompted numerous studies and applications (e.g. thermoplastic elastomers). [Pg.164]

P-plastomers provide a unique combination of ease of processing, such that conventional thermoplastic-processing routines and arid equipment can be adapted to this polymer as weU as for a final fabricated product that is elastic. This combination of properties leads to the easy fabrication of elastic materials such as fibers and films, which traditionally have only been made inelastic by the use of thermoplastics. This advance opens the pathway to the introduction of desirable elastic properties to a host of fabrication processes very different from either the conventional rubber-processing equipment or the conventional rubber products, such as tires. P-plastomers and their fabricated products are not only soft, but also elastic. [Pg.187]

TPEs from thermoplastics-mbber blends are materials having the characteristics of thermoplastics at processing temperature and that of elastomers at service temperature. This unique combination of properties of vulcanized mbber and the easy processability of thermoplastics bridges the gap between conventional elastomers and thermoplastics. Cross-linking of the mbber phase by dynamic vulcanization improves the properties of the TPE. The key factor that controls the properties of TPE is the blend morphology. It is essential that in a continuous plastic phase, the mbber phase should be dispersed uniformly, and the finer the dispersed phase the better are the properties. A number of TPEs from dynamically vulcanized mbber-plastic blends have been developed by Bhowmick and coworkers [98-102]. [Pg.1055]

ABA triblock copolymers of the styrene-diene type are well known, and owe their unique properties to their heterophase morphology. This arises from the incompatibility between the polystyrene A blocks and the polydiene B blocks, leading to the formation of a dispersion of very small polystyrene domains within the polydiene matrix. This type of elastic network, held together by the polystyrene "junctions", results in thermoplastic elastomer properties. [Pg.101]

Thermoplastic elastomers are materials which exhibit elastomeric behaviour at room temperature, but which can be processed as thermoplastics. Before one can understand the performance of these materials an understanding of how they can give their unique properties of elasticity and thermoplasticity is required this is best done by considering the styrene-butadiene-styrene (SBS) thermoplastic elastomers. [Pg.114]

Block copolymers possess unique and novel properties for industrial applications. During the past 20 years, they have sparked much interest, and several of them have been commercialized and are available on the market. The most common uses of block copolymers are as thermoplastic elastomers, toughened thermoplastic resins, membranes, polymer blends, and surfactants. From a chemist s point of view, the most important advantage of block copolymers is the wide variability of their chemical structure. By choice of the repeating unit and the length and structure of both polymer blocks, a whole range of properties can be adjusted. [Pg.151]

Industrially, silicone surfactants are used in a variety of processes including foam, textile, concrete and thermoplastic production, and applications include use as foam stabilisers, defoamers, emulsifiers, dispersants, wetters, adhesives, lubricants and release agents [1]. The ability of silicone surfactants to also function in organic media creates a unique niche for their use, such as in polyurethane foam manufacture and as additives to paints and oil-based formulations, whilst the ability to lower surface tension in aqueous solutions provides useful superwetting properties. The low biological risk associated with these compounds has also led to their use in cosmetics and personal care products [2]. [Pg.234]


See other pages where Thermoplastics uniqueness is mentioned: [Pg.207]    [Pg.394]    [Pg.361]    [Pg.382]    [Pg.391]    [Pg.300]    [Pg.322]    [Pg.214]    [Pg.343]    [Pg.400]    [Pg.41]    [Pg.191]    [Pg.711]    [Pg.188]    [Pg.587]    [Pg.653]    [Pg.26]    [Pg.327]    [Pg.7]    [Pg.65]    [Pg.75]    [Pg.187]    [Pg.852]    [Pg.192]    [Pg.234]    [Pg.485]    [Pg.56]    [Pg.65]    [Pg.10]    [Pg.32]    [Pg.39]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



UniQuant

Unique

Uniqueness

© 2024 chempedia.info