Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics specified

The principle of microscopic reversibility, required by the laws of thermodynamics, specifies that there must be a reverse for every microscopic process. It is therefore strictly speaking incorrect to omit reverse steps, and doing so is justified only when the omitted reverse step is occurring so slowly as to have no observable effect on the reaction during the time it will be under observation. [Pg.92]

In fact, the third law of thermodynamics specifies that the entropy of a perfect crystal is zero at a temperature of absolute zero. This principle allows absolute entropies to be defined and calculated. However, the entropies presented in the steam tables do not make use of the third law thus, the values presented are relative. [Pg.27]

One may now consider how changes can be made in a system across an adiabatic wall. The first law of thermodynamics can now be stated as another generalization of experimental observation, but in an unfamiliar form the M/ork required to transform an adiabatic (thermally insulated) system, from a completely specified initial state to a completely specifiedfinal state is independent of the source of the work (mechanical, electrical, etc.) and independent of the nature of the adiabatic path. This is exactly what Joule observed the same amount of work, mechanical or electrical, was always required to bring an adiabatically enclosed volume of water from one temperature 0 to another 02. [Pg.329]

The free energy differences obtained from our constrained simulations refer to strictly specified states, defined by single points in the 14-dimensional dihedral space. Standard concepts of a molecular conformation include some region, or volume in that space, explored by thermal fluctuations around a transient equilibrium structure. To obtain the free energy differences between conformers of the unconstrained peptide, a correction for the thermodynamic state is needed. The volume of explored conformational space may be estimated from the covariance matrix of the coordinates of interest, = ((Ci [13, lOj. For each of the four selected conform-... [Pg.172]

The ultimate definition of thermodynamic temperature is in terms of pV (pressure X volume) in a gas thermometer extrapolated to low pressure. The kelvin (K), the unit of thermodynamic temperature, is defined by specifying the temperature of one fixed point on the scale—the triple point... [Pg.1214]

Above 962°C, the freezing point of silver, temperatures on the ITS-90 ate defined by a thermodynamic function and an interpolation instmment is not specified. The interpolation instmment universally used is an optical pyrometer, manual or automatic, which is itself a thermodynamic device. [Pg.403]

The phase rule specifies the number of intensive properties of a system that must be set to estabUsh all other intensive properties at fixed values (3), without providing information about how to calculate values for these properties. The field of appHed engineering thermodynamics has grown out of the need to assign numerical values to thermodynamic properties within the constraints of the phase rule and fundamental laws. In the engineering disciplines there is a particular demand for physical properties, both for pure fluids and mixtures, and for phase equiUbrium data (4,5). [Pg.232]

From the definition of a partial molar quantity and some thermodynamic substitutions involving exact differentials, it is possible to derive the simple, yet powerful, Duhem data testing relation (2,3,18). Stated in words, the Duhem equation is a mole-fraction-weighted summation of the partial derivatives of a set of partial molar quantities, with respect to the composition of one of the components (2,3). For example, in an / -component system, there are n partial molar quantities, Af, representing any extensive molar property. At a specified temperature and pressure, only n — 1) of these properties are independent. Many experiments, however, measure quantities for every chemical in a multicomponent system. It is this redundance in reported data that makes thermodynamic consistency tests possible. [Pg.236]

The concept of equilibrium is central in thermodynamics, for associated with the condition of internal eqmlibrium is the concept of. state. A system has an identifiable, reproducible state when 1 its propei ties, such as temperature T, pressure P, and molar volume are fixed. The concepts oi state a.ndpropeity are again coupled. One can equally well say that the properties of a system are fixed by its state. Although the properties T, P, and V may be detected with measuring instruments, the existence of the primitive thermodynamic properties (see Postulates I and 3 following) is recognized much more indirectly. The number of properties for wdiich values must be specified in order to fix the state of a system depends on the nature of the system and is ultimately determined from experience. [Pg.513]

In practice, either T or F and either the hquid-phase or vapor-phase composition are specified, thus fixing 1 + (N — 1) = N independent variables. The remaining N variables are then subject to calculation, provided that sufficient information is available to allow determination of all necessary thermodynamic properties. [Pg.535]

Reliable thermodynamic data are essential for the accurate design or analysis of distillation columns. Failure of equipment to perform at specified levels is often attributable, at least in part, to the lack of such data. [Pg.1248]

When the kinetics are unknown, still-useful information can be obtained by finding equilibrium compositions at fixed temperature or adiabatically, or at some specified approach to the adiabatic temperature, say within 25°C (45°F) of it. Such calculations require only an input of the components of the feed and produc ts and their thermodynamic properties, not their stoichiometric relations, and are based on Gibbs energy minimization. Computer programs appear, for instance, in Smith and Missen Chemical Reaction Equilibrium Analysis Theory and Algorithms, Wiley, 1982), but the problem often is laborious enough to warrant use of one of the several available commercial services and their data banks. Several simpler cases with specified stoichiometries are solved by Walas Phase Equilibiia in Chemical Engineering, Butterworths, 1985). [Pg.2077]

Subsequently, in Chapter 5, we shall show how the cooling quantities may be determined we give even more practical cycle calculations, with these cooling quantities (ip) being determined practically rather than specified ab initio. But for the discussions in this chapter, in which we assess how important cooling is in modifying the overall thermodynamics of gas turbine cycle analysis, it is assumed that tp is known. [Pg.48]

We also give calculations of the performance of some of these various gas turbine plants. Comparison between such calculations is often difficult, even spot calculations at a single condition with state points specified in the cycle, because of the thermodynamic assumptions that have to be made (e.g. how closely conditions in a chemical reformer approach equilibrium). Performance calculations by different inventors/authors are also dependent upon assumed levels of component performance such as turbomachinery polytropic efficiency, required turbine cooling air flows and heat exchanger effectiveness if these are not identical in the cases compared then such comparisons of overall performance become invalid. However, we attempt to provide some performance calculations where appropriate in the rest of the chapter. [Pg.135]

Lloyd s detailed computation for a steam/TCR cycle is. shown in Fig. 8.11. Here the main thermodynamic parameters have been specified pressure ratio 15, turbine entry... [Pg.149]

Gaussian predicts various important thermodynamic quantities at the specified temperature and pressure, including the thermal energy correction, heat capacity and entropy. These items are broken down into their source components in the output ... [Pg.67]

When comparing calculated results to thermodynamic quantities extrapolated to zero Kelvin, the zero point energy needs to be added to the total energy. As with the frequencies themselves, this predicted quantity is scaled to eliminate known systematic errors in frequency calculations. Accordingly, if you have not specified a scale factor via input to the Reodlsotopes option, you will need to multiply the values in the output by the appropriate scale factor (see page 64). [Pg.68]

Potential-pH Equilibrium Diagram (Pourbaix Diagram) diagram of the equilibrium potentials of electrochemical reactions as a function of the pH of the solution. The diagram shows the phases that are thermodynamically stable when a metal reacts with water or an aqueous solution of specified ions. [Pg.1372]

Lloyd and Pagels show that these three requirements lead uniquely to an average complexity of a state proportional to the Shannon entropy of the set of (experimentally determined) trajectories leading to the given state (= EiPi oSzPi)- The thermodynamic depth of a state S to which the system S has evolved via the possible trajectory is equal to the amount of information required to specify that trajectory, or Djj S) Hamiltonian systems, Lloyd and... [Pg.627]

The boundary conditions are given by specifying the panicle currents at the boundaries. Holes can be injected into the polymer by thermionic emission and tunneling [32]. Holes in the polymer at the contact interface can also fall bach into the metal, a process usually called interlace recombination. Interface recombination is the time-reversed process of thermionic emission. At thermodynamic equilibrium the rates for these two time-reversed processes are the same by detailed balance. Thus, there are three current components to the hole current at a contact thermionic emission, a backflowing interface recombination current that is the time-reversed process of thermionic emission, and tunneling. Specifically, lake the contact at Jt=0 as the hole injecting contact and consider the hole current density at this contact. [Pg.186]

The general thermodynamic treatment of binary systems which involve the incorporation of an electroactive species into a solid alloy electrode under the assumption of complete equilibrium was presented by Weppner and Huggins [19-21], Under these conditions the Gibbs Phase Rule specifies that the electrochemical potential varies with composition in the single-phase regions of a binary phase diagram, and is composition-independent in two-phase regions if the temperature and total pressure are kept constant. [Pg.363]

Thermodynamic, statistical This discipline tries to compute macroscopic properties of materials from more basic structures of matter. These properties are not necessarily static properties as in conventional mechanics. The problems in statistical thermodynamics fall into two categories. First it involves the study of the structure of phenomenological frameworks and the interrelations among observable macroscopic quantities. The secondary category involves the calculations of the actual values of phenomenology parameters such as viscosity or phase transition temperatures from more microscopic parameters. With this technique, understanding general relations requires only a model specified by fairly broad and abstract conditions. Realistically detailed models are not needed to un-... [Pg.644]


See other pages where Thermodynamics specified is mentioned: [Pg.236]    [Pg.236]    [Pg.181]    [Pg.370]    [Pg.323]    [Pg.269]    [Pg.383]    [Pg.621]    [Pg.523]    [Pg.418]    [Pg.399]    [Pg.481]    [Pg.508]    [Pg.1128]    [Pg.1242]    [Pg.1242]    [Pg.76]    [Pg.439]    [Pg.354]    [Pg.9]    [Pg.469]    [Pg.211]    [Pg.57]    [Pg.581]    [Pg.1126]    [Pg.321]    [Pg.134]    [Pg.698]    [Pg.211]    [Pg.644]   


SEARCH



Specifier

Thermodynamic standard state unless otherwise specified)

Thermodynamics of Biochemical Reactions at Specified pH

© 2024 chempedia.info